6 resultados para Canary Islands Azores Gibraltar Observations
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Morphological and molecular studies have been performed on Laurencia dendroidea derived from Brazil and the Canary Islands. This species possesses all of the characters that are typical of the genus Laurencia, including the production of the first pericentral cell underneath the basal cell of the trichoblast; the production of tetrasporangia from particular pericentral cells without the formation of additional fertile pericentral cells; spermatangial branches that are produced from one of two laterals on the suprabasal cell of the trichoblasts; and a procarp-bearing segment that possesses five pericentral cells. The phylogenetic position of L. dendroidea was inferred by analysing the chloroplast-encoded rbcL gene sequences of 51 taxa. Phylogenetic analyses revealed that the taxa previously identified and cited in Brazil as Laurencia filiformis, L. majuscula and L. obtusa and in the Canary Islands as L. majuscula all represent the same taxonomic entity and examination of type material allowed us to identify this entity as L. dendroidea, whose type locality is in Brazil. Laurencia obtusa from the Northern Atlantic is confirmed to represent a distinct species, which displays high genetic divergence with respect to western and eastern Atlantic samples. The phylogenetic analyses also supported the nomenclatural transfer of Chondrophycus furcatus (Cordeiro-Marino & M. T. Fujii) M. T. Fujii & Senties to Palisada furcata (Cordeiro-Marino & M. T. Fujii) Cassano & M. T. Fujii comb. nov.
Resumo:
The genus Osmundea is a strongly supported monophyletic group within the Laurencia complex and shows a disjunct distribution occurring in the North-East and South-West Pacific, the Indian and Atlantic oceans and the Mediterranean Sea. Its phenotypic plasticity on the Canary Islands may be the result of the high ecological variability partially due to the particular oceanographic characteristics in this region. The combination of molecular analyses based on the comparison of the chloroplast-encoded rbcL sequences and morphological data allowed us to delimit three distinct taxa from the coasts of the Canarian Archipelago: Osmundea pinnatifida, Osmundea truncata and an unidentified species, Osmundea sp. Moreover, the high value of genetic divergence between Osmundea sp. and the rest of the Osmundea species suggests that this taxon should be assigned to a new species within the Osmundea genus. Occurrence of O. hybrida and O. oederi (synonym: O. ramosissima) has not been confirmed. Our results also suggest a possibly questionable record of the taxa O. hybrida and O. oederi on the Canary Islands.
Resumo:
Currently, five genera are assigned to red seaweeds of the Laurencia complex worldwide: Chondrophycus, Laurencia s.s., Osmundea, Palisada and Yuzurua. The genera are segregated on the basis of morphological characters, especially the reproductive traits, and molecular sequences of the plastid-encoded gene rbcL. Four of the genera have been resolved as monophyletic, but not Laurencia s.s. In this study based on an rbcL gene phylogeny we show the presence of a sixth lineage within the Laurencia complex, viz., Laurencia marilzae plus two unidentified species of Laurencia from Brazil. The phylogenetic position of this group, combined with the high genetic divergence from Laurencia s.s. (8.2-11%), strongly support the establishment of a sixth genus for the complex, proposed here as Laurenciella gen. nov. This new taxon differs from Laurencia s.s. and from the other genera of the complex by molecular sequence data, but is indistinguishable from Laurencia s.s. by the usual morphological features.
Resumo:
Free-living amoebae of the genus Acanthamoeba are the agents of both opportunistic and non-opportunistic infections and are frequently isolated from the environment. Of the 17 genotypes (T1-T17) identified thus far, 4 (T7, T8, T9, and T17) accommodate the rarely investigated species of morphological group I, those that form large, star-shaped cysts. We report the isolation and characterization of 7 new Brazilian environmental Acanthamoeba isolates, all assigned to group I. Phylogenetic analyses based on partial (similar to 1200 bp) SSU rRNA gene sequences placed the new isolates in the robustly supported clade composed of the species of morphological group I. One of the Brazilian isolates is closely related to A. comandoni (genotype T9), while the other 6, together with 2 isolates recently assigned to genotype T17, form a homogeneous, well-supported group (2-0% sequence divergence) that likely represents a new Acanthamoeba species. Thermotolerance, osmotolerance, and cytophatic effects, features often associated with pathogenic potential, were also examined. The results indicated that all 7 Brazilian isolates grow at temperatures up to 40 degrees C, and resist under hvperosmotic conditions. Additionally, media conditioned by each of the new Acanthamoeba isolates induced the disruption of SIRC and HeLa cell monolayers.
Resumo:
We performed morphological and molecular studies of Laurencia catarinensis from the Canary Islands. This species has an entangled habit, cushion-like tuft formation, cortical cell walls, slightly to markedly projecting near the apex, and lacking lenticular thickenings in medullary cells. We inferred its phylogenetic position by analyzing the chloroplast-encoded rbcL gene sequences from 41 samples. The results demonstrate that specimens of L. catarinensis from the Canary Islands, where it is referred to as L. intricata, and those from Brazil (including specimens from the type locality in Santa Catarina) form a monophyletic clade with low genetic divergence (0-0.9%). In contrast, specimens of L. intricata from the type locality in Cuba, Mexico, and the USA were clearly distinct from L. catarinensis collected in Brazil and the Canary Islands, as shown by high genetic divergence values (4.9-5.7%). The type material of L. catarinensis from Brazil allowed us to identify all samples from the Canarian Archipelago as L. catarinensis. These findings expand the known geographical distribution of L. catarinensis to the eastern Atlantic Ocean and demonstrate an amphi-Atlantic distribution of the species.
Resumo:
Different species of Laurencia have proven to be a rich source of natural products yielding interesting bioactive halogenated secondary metabolites, such as terpenoids and acetogenins. It is shown that such compounds are accumulated in the spherical, reniform to claviform refractive inclusions called corps en cerise (CC), which are intensively osmiophilic and located mainly in the cortical cells of the thalli and also in trichoblast cells. Up to now, it was believed that CC were present only in these two kinds of cells. Recently, however, a species of Laurencia, L. marilzae, with CC in all cells of the thallus, i.e., cortical, medullary, including the pericentral and axial cells, as well as in the trichoblasts, was described from the Canary Islands, and subsequently also reported to Brazil and Mexico. Within the Laurencia complex, only Laurencia species produce CC. Since the species of Laurencia are targets of interest for the prospection of bioactive substances due to their potential antibacterial, antifungal, anticholinesterasic, antileishmanial, cytotoxic, and antioxidant activities, the present paper carries out a comparative analysis of the corps en cerise in several species of Laurencia from the Atlantic Ocean to obtain basic information that can support natural product bioprospection projects. Our results show that the number and size of the CC are constant within a species, independent of the geographical distribution, corroborating their use for taxonomical purposes to differentiate groups of species that present a lower number from those that have a higher number. In this regard, there was a tendency for the number of CC to be higher in some species of Laurencia from the Canary Islands. The presence of CC can also be used to distinguish species in which these organelles are present in all cells of the thallus from those in which CC are restricted to the cortical cells. Among the species analyzed, L. viridis displayed the most varied secondary metabolites composition, such as sesquiterpenes, diterpenes, triterpenes, all of which showed potent antiviral, cytotoxic, and antitumoral activities, including protein phosphatase type 2A (PP2A) inhibitory effects.