5 resultados para Callinectes sapidus

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crustacean color change results partly from granule aggregation induced by red pigment concentrating hormone (RPCH). In shrimp chromatophores, both the cyclic GMP (3', 5'-guanosine monophosphate) and Ca2+ cascades mediate pigment aggregation. However, the signaling elements upstream and downstream from cGMP synthesis by GC-S (cytosolic guanylyl cyclase) remain obscure. We investigate post-RPCH binding events in perfused red ovarian chromatophores to disclose the steps modulating cGMP concentration, which regulates granule translocation. The inhibition of calcium/calmodulin complex (Ca2+/CaM) by N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W7) induces spontaneous aggregation but inhibits RPCH-triggered aggregation, suggesting a role in pigment aggregation and dispersion. Nitric oxide synthase inhibition by N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) strongly diminishes RPCH-induced aggregation; protein kinase G inhibition (by rp-cGMPs-triethylamine) reduces RPCH-triggered aggregation and provokes spontaneous dispersion, disclosing NO/PKG participation in aggregation signaling. Myosin light chain phosphatase inhibition (by cantharidin) accelerates RPCH-triggered aggregation, whereas Rho-associated protein kinase inhibition (by Y-27632, H-11522) reduces RPCH-induced aggregation and accelerates dispersion. MLCP (myosin light chain kinase) and ROCK (Rho-associated protein kinase) may antagonistically regulate myosin light chain (MLC) dephosphorylation/phosphorylation during pigment dispersion/aggregation. We propose the following general hypothesis for the cGMP/Ca2+ cascades that regulate pigment aggregation in crustacean chromatophores: RPCH binding increases Ca2+ (int), activating the Ca2+/CaM complex, releasing NOS-produced nitric oxide, and causing GC-S to synthesize cGMP that activates PKG, which phosphorylates an MLC activation site. Myosin motor activity is initiated by phosphorylation of an MLC regulatory site by ROCK activity and terminated by MLCP-mediated dephosphorylation. Qualitative comparison reveals that this signaling pathway is conserved in vertebrate and invertebrate chromatophores alike.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This investigation discloses the recognition of an FXYD2 protein in a microsomal Na,K-ATPase preparation from the posterior gills of the blue crab, Callinectes danae, by a mammalian (rabbit) FXYD2 peptide specific antibody (gamma C-33) and MALDI-TOF-TOF mass spectrometry techniques. This is the first demonstration of an invertebrate FXYD2 protein. The addition of exogenous pig FXYD2 peptide to the crab gill microsomal fraction stimulated Na,K-ATPase activity in a dose-dependent manner. Exogenous pig FXYD2 also considerably increased enzyme affinity for K+, ATP and N-4(+)center dot K-0.5 for Na+ was unaffected. Exogenous pig FXYD2 increased the V-max for stimulation of gill Na,K-ATPase activity by Na+, K+ and ATP, by 30% to 40%. The crab gill FXYD2 is phosphorylated by PKA, suggesting a regulatory function similar to that known for the mammalian enzyme. The PKA-phosphorylated pig FXYD2 peptide stimulated the crab gill Na,K-ATPase activity by 80%, about 2-fold greater than did the non-phosphorylated peptide. Stimulation by the PKC-phosphorylated pig FXYD2 peptide was minimal. These findings confirm the presence of an FXYD2 peptide in the crab gill Na, K-ATPase and demonstrate that this peptide plays an important role in regulating enzyme activity. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Portunid crabs are an important resource in estuaries, and require appropriate management to guarantee their long-term availability. We investigated the population dynamics and reproduction of Callinectes danae in the Estuarine-Bay Complex of Sao Vicente, Sao Paulo, Brazil, to provide basic biological information for public policies for the management of this fishery. Monthly samples were obtained from March 2007 to February 2008 on eight transects, four in the estuary and four in the bay. A total of 2261 specimens (403 males, 1288 females, of which 570 were ovigerous) were collected. Males were significantly larger than females, and the size-frequency distribution was unimodal for males, females and ovigerous females. The sex ratio was nearly always skewed toward females (M:F - 1:4.6). C. danae showed seasonal-continuous reproduction, with high reproductive activity in the warmer season. C. danae breeds in the estuarine-bay complex, with males and juvenile females concentrated in the estuary. After copulation, fertilized females migrate to the estuary entrance and the bay, where ovigerous females are commonly found spawning in high-salinity areas. Therefore, to manage this important economic resource, both the estuary and the bay should be considered for protection, but special attention should be given to the estuary entrance during the summer months, when ovigerous females concentrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of persistent organic pollutants (POPS) as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDE) in crabs Hepatus pudibundus and Callinectes danae was assessed from two different places inside of the Santos Bay and Moela Island near one of the most economically important metropolitan areas in Southern Brazil. Among POPs analyzed, Sigma PCBs (222-923 ng g(-1) lipid weight) and Sigma DDTs (154-410 ng g(-1) lw) exhibited the highest concentrations in the crabs. Sigma HCHs ranged from 10.3 to 30.9 ng g(-1), lw and were found in all individuals. Other OCPs found in lower concentration was Mirex (7.6-41.6 ng g(-1) lw) and HCB (5.83-16.9 ng g(-1) lw). Sigma PBDEs (24.1 ng g(-1) lw) were only found in one male individual from the species C. danae collected near to the submarine sewage of Santos. Male crabs showed higher POP concentrations than female crabs for those two species. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.