6 resultados para Calcination

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of the partial pressure of carbon dioxide (CO2) on the thermal decomposition process of a calcite (CI) and a dolomite (DP) is investigated in this paper using a thermogravimetric analyser. The tests were non-isothermal at five different heating rates in dynamic atmosphere of air with 0% and 15% carbon dioxide (CO2). In the atmosphere without CO2, the average activation energies (E-alpha) were 197.4 kJ mol(-1) and 188.1 kJ mol(-1) for CI and DP, respectively. For the DP with 15% CO2, two decomposition steps were observed, indicating a change of mechanism. The values of E-alpha for 15% CO2 were 378.7 kJ mol(-1) for the CI, and 299.8 kJ mol(-1) (first decomposition) and 453.4 kJ mol(-1) (second decomposition) for the DP, showing that the determination of E-alpha for DP should in this case be considered separately in those two distinct regions. The results obtained in this study are relevant to understanding the behaviour changes in the thermal decomposition of limestones with CO2 partial pressure when applied to technologies, such as carbon capture and storage (CCS), in which carbon dioxide is present in high concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1603, the Italian shoemaker Vincenzo Cascariolo found that a stone (baryte) from the outskirts of Bologna emitted light in the dark without any external excitation source. However, the calcination of the baryte was needed prior to this observation. The stone later named as the Bologna Stone was among the first luminescent materials and the first documented material to show persistent luminescence. The mechanism behind the persistent emission in this material has remained a mystery ever since. In this work, the Bologna Stone (BaS) was prepared from the natural baryte (Bologna, Italy) used by Cascariolo. Its properties, e. g. impurities (dopants) and their valences, luminescence, persistent luminescence and trap structure, were compared to those of the pure BaS materials doped with different (transition) metals (Cu, Ag, Pb) known to yield strong luminescence. The work was carried out by using different methods (XANES, TL, VUV-UV-vis luminescence, TGA-DTA, XPD). A plausible mechanism for the persistent luminescence from the Bologna Stone with Cu+ as the emitting species was constructed based on the results obtained. The puzzle of the Bologna Stone can thus be considered as resolved after some 400 years of studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, catalysts containing 5 wt.% Ni deposited on a support composed of a CeO2-ZrO2 solid solution deposited on alumina were tested in the steam reforming of methane. The supports, with various ratios of Ce to Zr, were prepared by co-precipitation of the oxide precursors, followed by calcination in synthetic air. The catalysts were then prepared by Ni impregnation of the supports. The prepared solids were characterized by temperature-programmed reduction with H-2 (TPR-H-2), in situ X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES) spectroscopy. The XRD analysis confirmed the formation of a solid solution between ZrO2 and CeO2. In the catalytic tests, it was found that catalysts with higher Ce content did not exhibit deactivation during 6 h of reaction. The catalyst with highest Ce content, Ni(0.8Ce0.2Zr)AI, provided the best result, with the highest rate of conversion of methane and the lowest carbon deposition, which may be partly due to the smaller Ni-0 crystallites in this sample and also the segregated CeO2 particles may have favored H2O adsorption which could lead to higher C gasification. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several types of alumina were synthesized from sodium aluminate (NaAlO2) by precipitation with sulfuric acid (H2SO4) and subsequently calcination at 500 degrees C to obtain gamma-Al2O3. The precursor aluminate was derived from aluminum scrap. The various gamma-Al2O3 synthesized were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), adsorption-desorption of N-2 (S-BET) and scanning electron microscopy (SEM). XRD revealed that distinct phases of Al2O3 were formed during thermal treatment. Moreover, it was observed that conditions of synthesis (pH, aging time and temperature) strongly affect the physicochemical properties of the alumina. A high-surface-area alumina (371 m(2) g(-1)) was synthesized under mild conditions, from inexpensive raw materials. These aluminas were tested for the adsorption of Cd(II), Zn(II) and Pb(II) from aqueous solution at toxic metal concentrations, and isotherms were determined. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of the temperature and reaction time on the sulfation process of a dolomite is investigated in this paper. The sulfation effectiveness was evaluated and correlated with changes in the physical characteristics of a Brazilian dolomite during the reactive process. Calcination and sulfation experiments were performed under isothermal conditions for dolomite samples with average particle sizes of 545 mu m at temperatures of 750 degrees C, 850 degrees C and 950 degrees C at different times of sulfation. Thermogravimetric tests were applied to establish the reactivity variation of the dolomite in function of the time in the sulfation reaction and evaluate the methodology of the samples preparation. Porosimetry tests were performed to study the pore blockage of dolomite during the sulfation reaction. The highest values of BET surface area were 25.55 m(2)/g, 29.55 m(2)/g and 12.62 m(2)/g for calcined samples and after their sulfation processes, conversions of 51.5%, 61.9% and 42.8% were obtained at 750 degrees C, 850 degrees C and 950 degrees C, respectively. Considering the process as a whole, the best fit was provided by a first-order exponential decay equation. Moreover, the results have shown that it is possible to quantify the decreasing in the dolomite reactivity for sulfur dioxide sorption and understand the changes in the behavior of the sulfation process of limestones when applied to technologies, as fluidized bed combustor, in which sulfur dioxide is present. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este estudo ilustra o impacto da calcinação de resíduo de bauxita (RB) nas propriedades de suspensões formuladas com cimento Portland, tanto no estado fresco como no endurecido. As suspensões foram avaliadas contendo uma razão constante de água-cimento e teor de resíduo variando de 5% a 20% em peso e em substituição ao cimento. As propriedades reológicas e a resistência mecânica foram alteradas em função do aumento do teor de RB, mas a calcinação não teve influência no resultado final obtido, seja no estado fresco ou no endurecido. Assim, pode-se afirmar que a utilização de resíduo de bauxita, natural ou calcinada, em formulações com cimento Portland pode reduzir o consumo de cimento, sendo uma alternativa para a utilização de uma grande quantidade deste tipo de resíduo.