2 resultados para Cadmium sulfide photoconductive cells.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Nitrogen removal coupled with sulfide oxidation has potential for the treatment of effluents from anaerobic reactors because they contain sulfide, which can be used as an endogenous electron donor for denitrification. This work evaluated the intrinsic kinetics of sulfide-oxidizing autotrophic denitrification via nitrate and nitrite in systems containing attached cells. Differential reactors were fed with nitrified synthetic domestic sewage and different sulfide concentrations. The intrinsic kinetic parameters of nitrogen removal were determined when the mass transfer resistance was negligible. This bioprocess could be described by a half-order kinetic model for biofilms. The half-order kinetic coefficients ranged from 0.425 to 0.658 mg N-1/2 L-1/2 h(-1) for denitrification via nitrite and from 0.190 to 0.609 mg N-1/2 L-1/2 h(-1) for denitrification via nitrate. In this latter, the lower value was due to the use of electrons donated from intermediary sulfur compounds whose formation and subsequent consumption were detected. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Most of the metals released from industrial activity, among them are cadmium (Cd) and nickel (Ni), inhibit the productivity of cultures and affect microbial metabolism. In this context, the aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Cd and Ni on cell growth, viability, budding rate and trehalose content of Saccharomyces cerevisiae, likely because of adsorption and chelating action. For this purpose, the yeast was grown batch-wise in YED medium supplemented with selected amounts of vinasse and Cd or Ni. The negative effects of Cd and Ni on S. cerevisiae growth and the mitigating one of sugar cane vinasse were quantified by an exponential model. Without vinasse, the addition of increasing levels of Cd and Ni reduced the specific growth rate, whereas in its presence no reduction was observed. Consistently with the well-proved toxicity of both metals, cell viability and budding rate progressively decreased with increasing their concentration, but in the presence of vinasse the situation was remarkably improved. The trehalose content of S. cerevisiae cells followed the same qualitative behavior as cell viability, even though the negative effect of both metals on this parameter was stronger. These results demonstrate the ability of sugar cane vinasse to mitigate the toxic effects of Cd and Ni.