49 resultados para Ca2 -related genes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Goncalves DA, Silveira WA, Lira EC, Gra a FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LC. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 302: E123-E133, 2012. First published September 27, 2011; doi:10.1152/ajpendo.00188.2011.-Although it is well known that administration of the selective beta(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein. On the other hand, the administration of CB to DEN rats ameliorates the loss of muscle mass, enhances the rate of protein synthesis, attenuates hyperactivation of proteasomal and lysosomal proteolysis, and suppresses the transcription of the lysosomal protease cathepsin L and of atrogin-1/MAFbx and MuRF1, two ubiquitin (Ub) ligases involved in muscle atrophy. These effects were not associated with alterations in either IGF-I content or Akt phosphorylation levels. In isolated muscles, CB (10(-6) M) treatment significantly attenuated DEN-induced overall proteolysis and upregulation in the mRNA levels of the Ub ligases. Similar responses were observed in denervated muscles exposed to 6-BNZ-cAMP (500 mu M), a PKA activator. The in vitro addition of triciribine (10 mu M), a selective Akt inhibitor, did not block the inhibitory effects of CB on proteolysis and Ub ligase mRNA levels. These data indicate that short-term treatment with CB mitigates DEN-induced atrophy of the soleus muscle through the stimulation of protein synthesis, downregulation of cathepsin L and Ub ligases, and consequent inhibition of lysosomal and proteasomal activities and that these effects are independent of Akt and possibly mediated by the cAMP/PKA signaling pathway.
Resumo:
The pathogenic mechanisms involved in migraine are complex and not completely clarified. Because there is evidence for the involvement of nitric oxide (NO) in migraine pathophysiology, candidate gene approaches focusing on genes affecting the endothelial function have been studied including the genes encoding endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and vascular endothelial growth factor (VEGF). However, investigations on gene-gene interactions are warranted to better elucidate the genetic basis of migraine. This study aimed at characterizing interactions among nine clinically relevant polymorphisms in eNOS (T-786C/rs2070744, the 27 bp VNTR in intron 4, the Glu298Asp/rs1799983, and two additional tagSNPs rs3918226 and rs743506), iNOS (C(-1026)A/rs2779249 and G2087A/rs2297518), and VEGF (C(-2578)A/rs699947 and G(-634)C/rs2010963) in migraine patients and control group. Genotypes were determined by real-time polymerase chain reaction using the Taqman(A (R)) allele discrimination assays or PCR and fragment separation by electrophoresis in 99 healthy women without migraine (control group) and in 150 women with migraine divided into two groups: 107 with migraine without aura and 43 with aura. The multifactor dimensionality reduction method was used to detect and characterize gene-gene interactions. We found a significant interaction between eNOS rs743506 and iNOS 2087G/A polymorphisms in migraine patients compared to control group (P < 0.05), suggesting that this combination affect the susceptibility to migraine. Further studies are needed to determine the molecular mechanisms explaining this interaction.
Resumo:
Background: Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are Chronic Myeloproliferative Neoplasms (MPN) characterized by clonal myeloproliferation/myeloaccumulation without cell maturation impairment. The JAK2 V617F mutation and PRV1 gene overexpression may contribute to MPN physiopathology. We hypothesized that deregulation of the apoptotic machinery may also play a role in the pathogenesis of ET and PMF. In this study we evaluated the apoptosis-related gene and protein expression of BCL2 family members in bone marrow CD34(+) hematopoietic stem cells (HSC) and peripheral blood leukocytes from ET and PMF patients. We also tested whether the gene expression results were correlated with JAK2 V617F allele burden percentage, PRV1 overexpression, and clinical and laboratory parameters. Results: By real time PCR assay, we observed that A1, MCL1, BIK and BID, as well as A1, BCLW and BAK gene expression were increased in ET and PMF CD34(+) cells respectively, while pro-apoptotic BAX and anti-apoptotic BCL2 mRNA levels were found to be lower in ET and PMF CD34(+) cells respectively, in relation to controls. In patients' leukocytes, we detected an upregulation of anti-apoptotic genes A1, BCL2, BCL-XL and BCLW. In contrast, pro-apoptotic BID and BIMEL expression were downregulated in ET leukocytes. Increased BCL-XL protein expression in PMF leukocytes and decreased BID protein expression in ET leukocytes were observed by Western Blot. In ET leukocytes, we found a correlation between JAK2 V617F allele burden and BAX, BIK and BAD gene expression and between A1, BAX and BIK and PRV1 gene expression. A negative correlation between PRV1 gene expression and platelet count was observed, as well as a positive correlation between PRV1 gene expression and splenomegaly. Conclusions: Our results suggest the participation of intrinsic apoptosis pathway in the MPN physiopathology. In addition, PRV1 and JAK2 V617F allele burden were linked to deregulation of the apoptotic machinery.
Resumo:
Background: Impaired apoptosis has been implicated in the development of childhood adrenocortical tumors (ACT), although the expression of apoptosis-related gene expression in such tumors has not been reported. Methods: The mRNA expression levels of the genes CASP3, CASP8, CASP9, FAS, TNF, NFKB, and BCL2 were analyzed by quantitative real-time PCR in consecutive tumor samples obtained at diagnosis from 60 children with a diagnosis of ACT and in 11 non-neoplastic adrenal samples. BCL2 and TNF protein expression was analyzed by immunohistochemistry. Results: A significant association was observed between tumor size >= 100 g and lower expression levels of the BCL2 (P=0.03) and TNF (P=0.05) genes; between stage IV and lower expression levels of CASP3 (P=0.008), CASP9 (P=0.02), BCL2 (P=0.002), TNF (P=0.05), and NFKB (P=0.03); Weiss score >= 3 and lower expression of TNF (P=0.01); unfavorable event and higher expression values of CASP9 (P=0.01) and lower values of TNF (P=0.02); and death and lower expression of BCL2 (P=0.04). Underexpression of TNF was associated with lower event-free survival in uni- and multivariate analyses (P<0.01). Similar results were observed when patients with Weiss score <3 were excluded. Conclusion: This study supports the participation of apoptosis-related genes in the biology and prognosis of childhood ACT and suggests the complex role of these genes in the pathogenesis of this tumor.
Resumo:
Aberrant expression of stem cell-related genes in tumors may confer more primitive and aggressive traits affecting clinical outcome. Here, we investigated expression and prognostic value of the neural stem cell marker CD133, as well as of the pluripotency genes LIN28 and OCT4 in 37 samples of pediatric medulloblastoma, the most common and challenging type of embryonal tumor. While most medulloblastoma samples expressed CD133 and LIN28, OCT4 expression was found to be more sporadic, with detectable levels occurring in 48% of tumors. Expression levels of OCT4, but not CD133 or LIN28, were significantly correlated with shorter survival (P <= 0.0001). Median survival time of patients with tumors hyperexpressing OCT4 and tumors displaying low/undetectable OCT4 expression were 6 and 153 months, respectively. More importantly, when patients were clinically stratified according to their risk of tumor recurrence, positive OCT4 expression in primary tumor specimens could discriminate patients classified as average risk but which further deceased within 5 years of diagnosis (median survival time of 28 months), a poor clinical outcome typical of high risk patients. Our findings reveal a previously unknown prognostic value for OCT4 expression status in medulloblastoma, which might be used as a further indicator of poor survival and aid postoperative treatment selection, with a particular potential benefit for clinically average risk patients.
Resumo:
The first cleavage divisions and preimplantation embryonic development are supported by mRNA and proteins synthesized and stored during oogenesis. Thus, mRNA molecules of maternal origin decrease and embryonic development becomes gradually dependent on expression of genetic information derived from the embryonic genome. However, it is still unclear what the role of the sperm cell is during this phase and whether the absence of the sperm cell during the artificial oocyte activation affects subsequent embryonic development. The objective of this study was to determine, in bovine embryos, changes in cell cycle-associated transcript levels (cyclin A, cyclin B, cyclin E, CDC2, CDK2, and CDK4) after oocyte activation in the presence or absence of the sperm cell. To evaluate that, in vitro-produced (IVP) and parthenogenetically activated (PA) embryos (2-4 cells (2-4C), 8-16 cells (8-16C) and blastocysts) were evaluated by real-time PCR. There was no difference in cleavage and blastocyst rates between IVP and PA groups. Transcript level was higher in oocytes than in IVP and PA embryos. Cleaved PA embryos showed higher expression of cyclin A, cyclin B, cyclin E, and CDK2 and lower expression of CDC2 when compared with that from the IVP group. At the time of activation, all transcripts were expressed less in PA than in IVP embryos, whereas at the blastocyst stage, almost all genes were expressed at a higher level in the PA group. These results suggest that in both groups there is an initial consumption of these transcripts in the early stages of embryonic development. Furthermore, 8-16C embryos seem to synthesize more cell cycle-related genes than 2-4C embryos. However, in PA embryos, activation of the cell cycle genes seems to occur after the 8- to 16-cell stage, suggesting a failure in the activation process.
Resumo:
Ocotea catharinensis is a basal angiosperm and an endangered tree species from the Brazilian Atlantic Rain Forest. Despite its economical and ecological importance, mass-propagation of this species is hampered by seldom-produced short-lived seeds, and in vitro propagation is challenged by frequently malformed somatic embryos. Therefore, O. catharinensis somatic embryos are also a good experimental material to study the physiological and molecular mechanisms underlying in vitro morphogenesis. In an ongoing effort to characterize genes expressed during somatic embryogenesis of O. catharinensis we have cloned two Ocotea WUSCHEL-related genes. According to our RT-PCR data, both genes were preferentially expressed in embryogenic cell aggregates. One of them, OcWUS, is a possible ortholog of the Arabidopsis WUSCHEL (WUS) gene, which codes for a homeodomain-containing protein involved in the specification and maintenance of the shoot apical meristem. We analyzed the expression patterns of OcWUS and OcWOX4 by RT-PCR, and OcWUS expression was also assessed by in situ hybridization. The expression patterns of OcWUS were very similar to those described for the Arabidopsis WUS. OcWUS transcripts were generally restricted to a small group of cells in the center of the putative shoot apical meristem of O. catharinensis somatic embryos. Perturbed expression of OcWUS might be related to abnormally formed somatic embryos of O. catharinensis obtained through tissue culture.
Resumo:
Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.
Resumo:
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic beta cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.
Resumo:
Abstract Background DNA repair genes encode proteins that protect organisms against genetic damage generated by environmental agents and by-products of cell metabolism. The importance of these genes in life maintenance is supported by their high conservation, and the presence of duplications of such genes may be easily traced, especially in prokaryotic genomes. Results The genome sequences of two Xanthomonas species were used as the basis for phylogenetic analyses of genes related to DNA repair that were found duplicated. Although 16S rRNA phylogenetic analyses confirm their classification at the basis of the gamma proteobacteria subdivision, differences were found in the origin of the various genes investigated. Except for lexA, detected as a recent duplication, most of the genes in more than one copy are represented by two highly divergent orthologs. Basically, one of such duplications is frequently positioned close to other gamma proteobacteria, but the second is often positioned close to unrelated bacteria. These orthologs may have occurred from old duplication events, followed by extensive gene loss, or were originated from lateral gene transfer (LGT), as is the case of the uvrD homolog. Conclusions Duplications of DNA repair related genes may result in redundancy and also improve the organisms' responses to environmental challenges. Most of such duplications, in Xanthomonas, seem to have arisen from old events and possibly enlarge both functional and evolutionary genome potentiality.
Resumo:
Abstract Background The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria. Results In this study, we employed a bioinformatic approach, to analyse and describe the open reading frames potentially related to DNA repair from the genome of the alpha-proteobacterium Caulobacter crescentus. This was performed by comparison with known DNA repair related genes found in public databases. As expected, although C. crescentus and E. coli bacteria belong to separate phylogenetic groups, many of their DNA repair genes are very similar. However, some important DNA repair genes are absent in the C. crescentus genome and other interesting functionally related gene duplications are present, which do not occur in E. coli. These include DNA ligases, exonuclease III (xthA), endonuclease III (nth), O6-methylguanine-DNA methyltransferase (ada gene), photolyase-like genes, and uracil-DNA-glycosylases. On the other hand, the genes imuA and imuB, which are involved in DNA damage induced mutagenesis, have recently been described in C. crescentus, but are absent in E. coli. Particularly interesting are the potential atypical phylogeny of one of the photolyase genes in alpha-proteobacteria, indicating an origin by horizontal transfer, and the duplication of the Ada orthologs, which have diverse structural configurations, including one that is still unique for C. crescentus. Conclusion The absence and the presence of certain genes are discussed and predictions are made considering the particular aspects of the C. crescentus among other known DNA repair pathways. The observed differences enlarge what is known for DNA repair in the Bacterial world, and provide a useful framework for further experimental studies in this organism.
Resumo:
Background: The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton. Results: Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5′-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation. Conclusions: These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee.
Resumo:
Abstract Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process.
Resumo:
There is a molecular crosstalk between the trophoblast and maternal immune cells of bovine endometrium. The uterine cells are able to secrete cytokine/chemokines to either induce a suppressive environment for establishment of the pregnancy or to recruit immune cells to the endometrium to fight infections. Despite morphological differences between women and cows, mechanisms for immune tolerance during pregnancy seem to be conserved. Mechanisms for uterine immunesuppression in the cow include: reduced expression of major histocompatability proteins by the trophoblast; recruitment of macrophages to the pregnant endometrium; and modulation of immune-related genes in response to the presence of the conceptus. Recently, an eGFP transgenic cloned embryo model developed by our group showed that there is modulation of foetal proteins expressed at the site of syncytium formation, suggesting that foetal cell can regulate not only by the secretion of specific factors such as interferon-tau, but also by regulating their own protein expression to avoid excessive maternal recognition by the local immune system. Furthermore, foetal DNA can be detected in the maternal circulation; this may reflect the occurrence of an invasion of trophoblast cells and/or their fragment beyond the uterine basement membrane in the cow. In fact, the newly description of exosome release by the trophoblast cell suggests that could be a new fashion of maternal-foetal communication at the placental barrier. Additionally, recent global transcriptome studies on bovine endometrium suggested that the immune system is aware, from an immunological point of view, of the presence of the foetus in the cow during early pregnancy.
Bacteriocinogenic and virulence potential of Enterococcus isolates obtained from raw milk and cheese
Resumo:
Aims To provide molecular and phenotypical characterization of Enterococcus isolates obtained from raw milk and cheese, regarding their bacteriocinogenic and virulence activity. Methods and Results Forty-three bacteriocinogenic enterococci isolates were identified by 16s rDNA, fingerprinted by RAPD-PCR analysis and tested by PCR for the presence of genes for lantibiotics (lanM, lanB and lanC) and enterocins (entA, entB, entP, entL50AB and entAS48) and by phenotypical methods for bacteriocin production and inhibitory spectrum. Also, the virulence of the isolates was evaluated by PCR for genes gelE, hyl, asa1, esp, cylA, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc and by phenotypical tests for gelatinase, lipase, DNAse and a- and beta-haemolysis. Most isolates (93.0%) harboured at least one lantibiotic or enterocin gene and were positive for several tested virulence genes, mainly asa1 (100%), gelE (93.0%) and efaA (83.7%). 53.5% of the isolates presented beta-haemolysis. Conclusions Enterococcus spp. isolates presented an interesting potential application for food preservation because of bacteriocin production; however, virulence-related genes were identified in all RAPD profiles. Significance and Impact of the Study The study demonstrated the contradictory characteristics of the tested Enterococcus isolates: they presented a good potential for application in food biopreservation but contained several virulence factors.