3 resultados para CYANOTOXINS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study investigates the use of solar heterogeneous photocatalyis (TiO2) for the destruction of [D-Leu]-Microcystin-LR, powerful toxin of widespread occurrence within cyanobacteria blooms. We extracted [D-Leu]-Microcystin-LR from a culture of Microcystis spp. and used a flat plate glass reactor coated with TiO2 (Degussa, P25) for the degradation studies. The irradiance was measured during the experiments with the aid of a spectroradiometer. After the degradation experiments, toxin concentrations were determined by HPLC and mineralization by TOC analyses. Acute and chronic toxicities were, quantified using mice and phosphatase inhibition in vitro assays, respectively. According to the performed experiments, 150 min were necessary to reduce the toxin concentration to the WHO's guideline for drinking water (from 10 to 1 mu g L-1) and to mineralize 90% of the initial carbon content. Another important finding is that solar heterogeneous photocatalysis was a destructive process indeed, not only for the toxin, but also for the other extract components and degradation products generated. Moreover, toxicity tests using mice have shown that the acute effect caused by the initial sample was removed. However, tests using the phosphatase enzyme indicated that it may be formed products capable of inducing chronic effects on mammals. The performed experiments indicate the feasibility of using solar heterogeneous photocatalysis for treating contaminated water with [D-Leu]-Microcystin-LR, not only due to its destruction, but also to the significant removal of organic matter and acute toxicity that can be achieved. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water pollution caused by toxic cyanobacteria is a problem worldwide, increasing with eutrophication. Due to its biological significance, genotoxicity should be a focus for biomonitoring pollution owing to the increasing complexity of the toxicological environment in which organisms are exposed. Cyanobacteria produce a large number of bioactive compounds, most of which lack toxicological data. Microcystins comprise a class of potent cyclic heptapeptide toxins produced mainly by Microcystis aeruginosa. Other natural products can also be synthesized by cyanobacteria, such as the protease inhibitor, aeruginosin. The hepatotoxicity of microcystins has been well documented, but information on the genotoxic effects of aeruginosins is relatively scarce. In this study, the genotoxicity and ecotoxicity of methanolic extracts from two strains of M. aeruginosa NPLJ-4, containing high levels of microcystin, and M. aeruginosa NPCD-1, with high levels of aeruginosin, were evaluated. Four endpoints, using plant assays in Allium cepa were applied: rootlet growth inhibition, chromosomal aberrations, mitotic divisions, and micronucleus assays. The microcystin content of M. aeruginosa NPLJ-4 was confirmed through ELISA, while M. aeruginosa NPCD-1 did not produce microcystins. The extracts of M. aeruginosa NPLJ-4 were diluted at 0.01, 0.1, 1 and 10 ppb of microcystins: the same procedure was used to dilute M. aeruginosa NPCD-1 used as a parameter for comparison, and water was used as the control. The results demonstrated that both strains inhibited root growth and induced rootlet abnormalities. The strain rich in aeruginosin was more genotoxic, altering the cell cycle, while microcystins were more mitogenic. These findings indicate the need for future research on non-microcystin producing cyanobacterial strains. Understanding the genotoxicity of M. aeruginosa extracts can help determine a possible link between contamination by aquatic cyanobacteria and high risk of primary liver cancer found in some areas as well as establish water level limits for compounds not yet studied. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the effects of an anatoxin-a(s)-containing extract on a cockroach semi-isolated heart preparation and the results supporting the extract s biological activity on acetylcholinesterase (purified from ell). The presence of the toxin in cyanobacterial strains Anabaena spiroides (ITEP-024, ITEP-025 and ITEP-026) isolated from the Tapacurá reservoir in Pernambuco, Brazil, was confirmed by means of liquid chromatography coupled to an ion-trap mass spectrometer. The anticholinesterase activity was assessed biochemically by the Ellman test and was confirmed by measuring the cockroach s heart rate. The concentration of the extract containing the tested anatoxin-a(s) (antx-a(s)) (10, 16 and 100 μg.μL-1) inhibited the eel acetylcholinesterase (AChE) by more than 90%. The cockroach cardiac frequency increased by a maximum of about 20% within 29 min after the addition of 2.5x10³ μg of extract containing antxa (s).g-1 bw (n=9, p<0.05). Our results strongly indicate that antx-a(s) is capable of exerting biological effects on cockroach, indicating that more research might be conducted to determine its role in the environment, especially on insects.