5 resultados para CONGO

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glacigenic diamictite successions of the Macaubas Group are widespread in the western domain of the Aracuai orogen, east of the Sao Francisco craton (Brazil). Diamictites also occur on this craton and in the African counterpart of the Aracuai orogen, the West Congo belt. Detrital zircon grains from the matrix of diamictites and sandstones from the Macaubas Group were dated by the U-Pb SHRIMP technique. The geochronological study sets the maximum depositional age of the glacial diamictites at 900 Ma, and indicates multiple sources for the Macaubas basin with ages ranging from 900 to 2800 Ma. Sm-Nd T-DM model ages, determined on whole rock samples, range from 1.8 Ga to 2.5 Ga and get older up-section. Comparison of our data with those from the cratonic area suggest that these glacial deposits can be correlated to the Jequitai and Carrancas diamictites in the Sao Francisco craton, and to the Lower Mixtite Formation of the West Congolian Group, exposed in Africa. The 900-1000 Ma source is most probably represented by the Zadinian-Mayumbian volcanic rocks and related granites from the West Congo belt. However, one of the most voluminous sources, with ages in the 1.1-1.3 Ga interval, has not been detected in the Sao Francisco-Congo craton. Possible sources for these grains could occur elsewhere in Africa, or possibly from within the Brasilia Belt in western central Brazil. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work combines structural and geochronological data to improve our understanding of the mechanical behaviour of continental crust involving large amount of magma or partially melted material in an abnormally hot collisional belt. We performed a magnetic and geochronological (U/Pb) study on a huge tonalitic batholith from the Neoproterozoic Aracual belt of East Brazil to determine the strain distribution through space and time. Anisotropy of magnetic susceptibility, combined with rock magnetism investigations, supports that the magnetic fabric is a good proxy of the structural fabric. Field measurements together with the magnetic fabrics highlight the presence in the batholith of four domains characterized by contrasted magmatic flow patterns. The western part is characterized by a gently dipping, orogen-parallel (similar to NS) magmatic foliation that bears down-dip lineations, in agreement with westward thrusting onto the Sao Francisco craton. Eastward, the magmatic foliation progressively turns sub-vertical with a lineation that flips from sub-horizontal to sub-vertical over short distances. This latter domain involves an elongated corridor in which the magmatic foliation is sub-horizontal and bears an orogen-parallel lineation. Finally the fourth, narrow domain displays sub-horizontal lineations on a sub-vertical magmatic foliation oblique (similar to N150 degrees E) to the trend of the belt. U/Pb dating of zircons from the various domains revealed homogeneity in age for all samples. This, together with the lack of solid-state deformation suggests that: 1) the whole batholith emplaced during a magmatic event at similar to 580 Ma, 2) the deformation occurred before complete solidification. and 3) the various fabrics are roughly contemporaneous. The complex structural pattern mapped in the studied tonalitic batholith suggests a 3D deformation of a slowly cooling, large magmatic body and its country rock. We suggest that the development of the observed 3D flow field was promoted by the low viscosity of the middle crust that turned gravitational force as an active tectonic force combining with the East-West convergence between the Sao Francisco and Congo cratons. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New geochronological and geochemical constraints on Precambrian sedimentary and volcanic successions exposed in the western part of the Central Domain of the Borborema Province, NE Brazil, indicate the presence of two distinct tectono-stratigraphic complexes: Riacho Gravata and Sao Caetano. Both complexes and associated orthogneisses are referred in the literature as the Cariris Velhos belt, having depositional, extrusive, or intrusive ages within the interval 985-913 Ma. The Riacho Gravata complex consists of bimodal (but mostly felsic) volcanic and volcanoclastic rocks, muscovite+/-graphite schists, quartzites, and marble with local occurrences of banded-iron-formation. The Sao Caetano complex mainly consists of metagreywackes, marbles, calc-silicate rocks, and rare meta-mafic rocks. Meta-mafic rocks from both complexes have geochemical signatures similar to those of continental flood basalts, with epsilon Nd (1.0 Ga) values ranging from -1.0 to -2.8. Felsic volcanic rocks from the Riacho Gravata complex show epsilon Nd (1.0 Ga) values ranging from -1.0 to -7.4 and geochemical signatures similar to A(2)-type granitoids. New SHRIMP U-Pb zircon data from felsic volcanic rocks within the Riacho Gravata complex yielded ages of 1091 +/- 13 Ma and 996 +/- 13 Ma. In contrast, meta-graywackes from the Sao Caetano complex show a maximum deposition age of ca. 806 Ma in the northern part and ca. 862 Ma in the southern part of the outcrop area. The orthogneisses show epsilon Nd (1.0 Ga) values ranging from 1.0 to -4.2 with U/Pb TIMS and SHRIMP ages ranging from 960 to 926 Ma and geochemical signatures of A(2)-type granitoids. The data reported in this paper suggest at least two periods of extension within the Central Domain of the Borborema Province, the first starts ca. 1091 Ma with magmatism and deposition, creating the Riacho Gravata basin and continued intrusion of A-type granites to 920 Ma. A second rift event, which reactivated old faults, generated a basin with a maximum deposition age of ca. 806 Ma. Furthermore, the oldest granitoids cutting these metasedimentary rocks have crystallization ages of ca. 600 Ma. This suggests that the second rift event could be early Brasiliano in age. The resulting Sao Caetano basin received detritus from a variety of sources, although detritus from the Riacho Gravata complex dominated. Deposition ages of the Riacho Gravata and the Sao Caetano complexes are coeval with deposits in other basins of the Borborema Province (Riacho do Tigre in the Central Domain; Macurure and Maranco in the Sergipano Belt of the Southern domain). The Macaubas Group from SE Brazil and its counterparts in Africa, the Zadanian and Mayumbian Groups, in the western edge of the Congo Craton are also coeval. Closure of the Riacho Gravata and Sao Caetano basins occurred during the Brasiliano convergence (705-600 Ma). During the last stage of convergence, ca. 612 Ma, pull-apart basins were created and filled; final basin closure took place 605-592 Ma, after deposition ceased. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amyloidosis is part of a group of deposition diseases. Nodular amyloidosis is a rare form of primary cutaneous amyloidosis. It affects men and women, usually over the age of 60 years. Presenting manifestation of the disease are yellowish-erythematous or brownish nodules or plaques in single or multiple infiltrates. Systemic evaluation should be performed to rule out involvement of other organs. Follow-up of the patient is important because the condition may progress to systemic amyloidosis. We report a case of nodular amyloidosis in which the lesion had a corymbiform aspect without systemic involvement and no recurrence after two years of follow-up.