3 resultados para CONDOR-Ia
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Mezzarane RA, Kohn AF, Couto-Roldan E, Martinez L, Flores A, Manjarrez E. Absence of effects of contralateral group I muscle afferents on presynaptic inhibition of Ia terminals in humans and cats. J Neurophysiol 108: 1176-1185, 2012. First published June 6, 2012; doi:10.1152/jn.00831.2011.-Crossed effects from group I afferents on reflex excitability and their mechanisms of action are not yet well understood. The current view is that the influence is weak and takes place indirectly via oligosynaptic pathways. We examined possible contralateral effects from group I afferents on presynaptic inhibition of Ia terminals in humans and cats. In resting and seated human subjects the soleus (SO) H-reflex was conditioned by an electrical stimulus to the ipsilateral common peroneal nerve (CPN) to assess the level of presynaptic inhibition (PSI_control). A brief conditioning vibratory stimulus was applied to the triceps surae tendon at the contralateral side (to activate preferentially Ia muscle afferents). The amplitude of the resulting H-reflex response (PSI_conditioned) was compared to the H-reflex under PSI_control, i.e., without the vibration. The interstimulus interval between the brief vibratory stimulus and the electrical shock to the CPN was -60 to 60 ms. The H-reflex conditioned by both stimuli did not differ from that conditioned exclusively by the ipsilateral CPN stimulation. In anesthetized cats, bilateral monosynaptic reflexes (MSRs) in the left and right L 7 ventral roots were recorded simultaneously. Conditioning stimulation applied to the contralateral group I posterior biceps and semitendinosus (PBSt) afferents at different time intervals (0-120 ms) did not have an effect on the ipsilateral gastrocnemius/soleus (GS) MSR. An additional experimental paradigm in the cat using contralateral tendon vibration, similar to that conducted in humans, was also performed. No significant differences between GS-MSRs conditioned by ipsilateral PBSt stimulus alone and those conditioned by both ipsilateral PBSt stimulus and contralateral tendon vibration were detected. The present results strongly suggest an absence of effects from contralateral group I fibers on the presynaptic mechanism of MSR modulation in relaxed humans and anesthetized cats.
Resumo:
Context. The angular diameter distances toward galaxy clusters can be determined with measurements of Sunyaev-Zel'dovich effect and X-ray surface brightness combined with the validity of the distance-duality relation, D-L(z)(1 + z)(2)/D-A(z) = 1, where D-L(z) and D-A(z) are, respectively, the luminosity and angular diameter distances. This combination enables us to probe galaxy cluster physics or even to test the validity of the distance-duality relation itself. Aims. We explore these possibilities based on two different, but complementary approaches. Firstly, in order to constrain the possible galaxy cluster morphologies, the validity of the distance-duality relation (DD relation) is assumed in the Lambda CDM framework (WMAP7). Secondly, by adopting a cosmological-model-independent test, we directly confront the angular diameters from galaxy clusters with two supernovae Ia (SNe Ia) subsamples (carefully chosen to coincide with the cluster positions). The influence of the different SNe Ia light-curve fitters in the previous analysis are also discussed. Methods. We assumed that eta is a function of the redshift parametrized by two different relations: eta(z) = 1 +eta(0)z, and eta(z) = 1 + eta(0)z/(1 + z), where eta(0) is a constant parameter quantifying the possible departure from the strict validity of the DD relation. In order to determine the probability density function (PDF) of eta(0), we considered the angular diameter distances from galaxy clusters recently studied by two different groups by assuming elliptical and spherical isothermal beta models and spherical non-isothermal beta model. The strict validity of the DD relation will occur only if the maximum value of eta(0) PDF is centered on eta(0) = 0. Results. For both approaches we find that the elliptical beta model agrees with the distance-duality relation, whereas the non-isothermal spherical description is, in the best scenario, only marginally compatible. We find that the two-light curve fitters (SALT2 and MLCS2K2) present a statistically significant conflict, and a joint analysis involving the different approaches suggests that clusters are endowed with an elliptical geometry as previously assumed. Conclusions. The statistical analysis presented here provides new evidence that the true geometry of clusters is elliptical. In principle, it is remarkable that a local property such as the geometry of galaxy clusters might be constrained by a global argument like the one provided by the cosmological distance-duality relation.
Resumo:
The existence of inhomogeneities in the observed Universe modifies the distance-redshift relations thereby affecting the results of cosmological tests in comparison to the ones derived assuming spatially uniform models. By modeling the inhomogeneities through a Zeldovich-Kantowski-Dyer-Roeder approach which is phenomenologically characterized by a smoothness parameter alpha, we rediscuss the constraints on the cosmic parameters based on type Ia supernovae (SNe Ia) and gamma-ray bursts (GRBs) data. The present analysis is restricted to a flat Lambda CDM model with the reasonable assumption that Lambda does not clump. A chi(2) analysis using 557 SNe Ia data from the Union2 compilation data (R. Amanullah et al., Astrophys. J. 716, 712 (2010).) constrains the pair of parameters (Omega(m), alpha) to Omega(m) = 0.27(-0.03)(+0.08) (2 sigma) and alpha >= 0.25. A similar analysis based only on 59 Hymnium GRBs (H. Wei, J. Cosmol. Astropart. Phys. 08 (2010) 020.) constrains the matter density parameter to be Omega(m) = 0.35(-0.24)(+0.62) (2 sigma) while all values for the smoothness parameter are allowed. By performing a joint analysis, it is found that Omega(m) = 0.27(-0.06)(+0.06) and alpha >= 0.52. As a general result, although considering that current GRB data alone cannot constrain the smoothness alpha parameter, our analysis provides an interesting cosmological probe for dark energy even in the presence of inhomogeneities.