11 resultados para COLLECTIVE EXCITATIONS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider a superfluid cloud composed of a Bose-Einstein condensate oscillating within a magnetic trap (dipole mode) where, due to the existence of a Feshbach resonance, an effective periodic time-dependent modulation in the scattering length is introduced. Under this condition, collective excitations such as the quadrupole mode can take place. We approach this problem by employing both the Gaussian and the Thomas-Fermi variational Ansatze. The resulting dynamic equations are analyzed by considering both linear approximations and numerical solutions, where we observe coupling between dipole and quadrupole modes. Aspects of this coupling related to the variation of the dipole oscillation amplitude are analyzed. This may be a relevant effect in situations where oscillation in a magnetic field in the presence of a bias field B takes place, and should be considered in the interpretation of experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV-visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 mu m, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a recent study we demonstrated the emergence of turbulence in a trapped Bose-Einstein condensate of Rb-87 atoms. An intriguing observation in such a system is the behavior of the turbulent cloud during free expansion. The aspect ratio of the cloud size does not change in the way one would expect for an ordinary non-rotating (vortex-free) condensate. Here we show that the anomalous expansion can be understood, at least qualitatively, in terms of the presence of vorticity distributed throughout the cloud, effectively counteracting the usual reversal of the aspect ratio seen in free time-of-flight expansion of non-rotating condensates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is a well-established fact that statistical properties of energy-level spectra are the most efficient tool to characterize nonintegrable quantum systems. The statistical behavior of different systems such as complex atoms, atomic nuclei, two-dimensional Hamiltonians, quantum billiards, and noninteracting many bosons has been studied. The study of statistical properties and spectral fluctuations in interacting many-boson systems has developed interest in this direction. We are especially interested in weakly interacting trapped bosons in the context of Bose-Einstein condensation (BEC) as the energy spectrum shows a transition from a collective nature to a single-particle nature with an increase in the number of levels. However this has received less attention as it is believed that the system may exhibit Poisson-like fluctuations due to the existence of an external harmonic trap. Here we compute numerically the energy levels of the zero-temperature many-boson systems which are weakly interacting through the van der Waals potential and are confined in the three-dimensional harmonic potential. We study the nearest-neighbor spacing distribution and the spectral rigidity by unfolding the spectrum. It is found that an increase in the number of energy levels for repulsive BEC induces a transition from a Wigner-like form displaying level repulsion to the Poisson distribution for P(s). It does not follow the Gaussian orthogonal ensemble prediction. For repulsive interaction, the lower levels are correlated and manifest level-repulsion. For intermediate levels P(s) shows mixed statistics, which clearly signifies the existence of two energy scales: external trap and interatomic interaction, whereas for very high levels the trapping potential dominates, generating a Poisson distribution. Comparison with mean-field results for lower levels are also presented. For attractive BEC near the critical point we observe the Shnirelman-like peak near s = 0, which signifies the presence of a large number of quasidegenerate states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semiempirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time correlation functions of current fluctuations were calculated by molecular dynamics (MD) simulations in order to investigate sound waves of high wavevectors in the glass-forming liquid Ca(NO3)(2)center dot 4H(2)O. Dispersion curves, omega(k), were obtained for longitudinal (LA) and transverse acoustic (TA) modes, and also for longitudinal optic (LO) modes. Spectra of LA modes calculated by MD simulations were modeled by a viscoelastic model within the memory function framework. The viscoelastic model is used to rationalize the change of slope taking place at k similar to 0.3 angstrom(-1) in the omega(k) curve of acoustic modes. For still larger wavevectors, mixing of acoustic and optic modes is observed. Partial time correlation functions of longitudinal mass currents were calculated separately for the ions and the water molecules. The wavevector dependence of excitation energies of the corresponding partial LA modes indicates the coexistence of a relatively stiff subsystem made of cations and anions, and a softer subsystem made of water molecules. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751548]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spin-1 anisotropic antiferromagnet NiCl2-4SC(NH2)(2) exhibits a field-induced quantum phase transition that is formally analogous to Bose-Einstein condensation. Here we present results of systematic high-field electron spin resonance (ESR) experimental and theoretical studies of this compound with a special emphasis on single-ion two-magnon bound states. In order to clarify some remaining discrepancies between theory and experiment, the frequency-field dependence of magnetic excitations in this material is reanalyzed. In particular, a more comprehensive interpretation of the experimental signature of single-ion two-magnon bound states is shown to be fully consistent with theoretical results. We also clarify the structure of the ESR spectrum in the so-called intermediate phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been recently shown numerically that the transition from integrability to chaos in quantum systems and the corresponding spectral fluctuations are characterized by 1/f(alpha) noise with 1 <= alpha <= 2. The system of interacting trapped bosons is inhomogeneous and complex. The presence of an external harmonic trap makes it more interesting as, in the atomic trap, the bosons occupy partly degenerate single-particle states. Earlier theoretical and experimental results show that at zero temperature the low-lying levels are of a collective nature and high-lying excitations are of a single-particle nature. We observe that for few bosons, the P(s) distribution shows the Shnirelman peak, which exhibits a large number of quasidegenerate states. For a large number of bosons the low-lying levels are strongly affected by the interatomic interaction, and the corresponding level fluctuation shows a transition to a Wigner distribution with an increase in particle number. It does not follow Gaussian orthogonal ensemble random matrix predictions. For high-lying levels we observe the uncorrelated Poisson distribution. Thus it may be a very realistic system to prove that 1/f(alpha) noise is ubiquitous in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to describe the construction workers' activities, as well as their perceptions about risks and workload. The study, based on the Collective Work Analysis, is part of a broader public policies project for the improvement of SIVAT (Surveillance System of Work Accidents) - in the city of Piracicaba (Southeastern Brazil). Civil construction was prioritized given the epidemiological magnitude of the occurrence of work accidents and the limited efficacy of traditional surveillance initiatives in this sector due to informal employment practices, outsourcing, high staff turnover, etc. The workers have a high level of awareness concerning the risk of accidents, but they believe that the main preventive measures hinder or even make it impossible for them to carry out the tasks. Our findings question the efficacy of traditional training for adherence to safety practices, thus highlighting the need for a transformative pedagogy for preventive practices and the health promotion of workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The second Fourier component v(2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p(T)) of 1-12 GeV/c in Au + Au collisions at root s(NN) = 200 GeV. Previous measurements of this quantity for hadrons with p(T) < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p(T) > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p(T) > 4 GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the p(T) < 4 GeV/c region dominated by thermal photons, we find a substantial direct-photon v(2) comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed v(2).