7 resultados para COEVOLUTION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Antagonistic interactions between host plants and mistletoes often form complex networks of interacting species. Adequate characterization of network organization requires a combination of qualitative and quantitative data. Therefore, we assessed the distribution of interactions between mistletoes and hosts in the Brazilian Pantanal and characterized the network structure in relation to nestedness and modularity. Interactions were highly asymmetric, with mistletoes presenting low host specificity (i.e., weak dependence) and with hosts being highly susceptible to mistletoe-specific infections. We found a non-nested and modular pattern of interactions, wherein each mistletoe species interacted with a particular set of host species. Psittacanthus spp. infected more species and individuals and also caused a high number of infections per individual, whereas the other mistletoes showed a more specialized pattern of infection. For this reason, Psittacanthus spp. were regarded as module hubs while the other mistletoe species showed a peripheral role. We hypothesize that this pattern is primarily the result of different seed dispersal systems. Although all mistletoe species in our study are bird dispersed, the frugivorous assemblage of Psittacanthus spp. is composed of a larger suite of birds, whereas Phoradendron are mainly dispersed by Euphonia species. The larger assemblage of bird species dispersing Psittacanthus seeds may also increase the number of hosts colonized and, consequently, its dominance in the study area. Nevertheless, other restrictions on the interactions among species, such as the differential capacity of mistletoe infections, defense strategies of hosts and habitat types, can also generate or enhance the observed pattern.
Resumo:
Genes involved in host-pathogen interactions are often strongly affected by positive natural selection. The Duffy antigen, coded by the Duffy antigen receptor for chemokines (DARC) gene, serves as a receptor for Plasmodium vivax in humans and for Plasmodium knowlesi in some nonhuman primates. In the majority of sub-Saharan Africans, a nucleic acid variant in GATA-1 of the gene promoter is responsible for the nonexpression of the Duffy antigen on red blood cells and consequently resistance to invasion by P. vivax. The Duffy antigen also acts as a receptor for chemokines and is expressed in red blood cells and many other tissues of the body. Because of this dual role, we sequenced a 3,000-bp region encompassing the entire DARC gene as well as part of its 5' and 3' flanking regions in a phylogenetic sample of primates and used statistical methods to evaluate the nature of selection pressures acting on the gene during its evolution. We analyzed both coding and regulatory regions of the DARC gene. The regulatory analysis showed accelerated rates of substitution at several sites near known motifs. Our tests of positive selection in the coding region using maximum likelihood by branch sites and maximum likelihood by codon sites did not yield statistically significant evidence for the action of positive selection. However, the maximum likelihood test in which the gene was subdivided into different structural regions showed that the known binding region for P. vivax/P. knowlesi is under very different selective pressures than the remainder of the gene. In fact, most of the gene appears to be under strong purifying selection, but this is not evident in the binding region. We suggest that the binding region is under the influence of two opposing selective pressures, positive selection possibly exerted by the parasite and purifying selection exerted by chemokines.
Resumo:
In the present study, the presence of tick-associated bacteria and protozoa in Ornithodoros rostratus ticks (adults, nymphs, and eggs) from the Pantanal region of Brazil were determined by molecular detection. In these ticks, DNA from protozoa in the genera Babesia and Hepatozoon, and bacteria from the genera Rickettsia, Borrelia, Anaplasma, and Ehrlichia were not detected. Conversely, all tested ticks (100%) yielded PCR products for 3 Coxiella genes (16S rRNA, pyrG, cap). PCR and phylogenetic analysis of 3 amplified genes (16S rRNA, pyrG, cap) demonstrated that the agent infecting O. rostratus ticks was a member of the genus Coxiella. This organism grouped with Coxiella symbionts of other soft tick species (Argasidae), having different isolates of C. burnetii as a sister group, and these 2 groups formed a clade that grouped with another clade containing Coxiella symbionts of hard tick species (Ixodidae). Analysis of tick mitochondrial 16S rRNA gene database composed mostly of tick species previously shown to harbor Coxiella symbionts suggests a phylogenetic congruence of ticks and their Coxiella symbionts. Furthermore, these results suggest a very long period of coevolution between ticks and Coxiella symbionts and indicates that the original infection may have occurred in an ancestor common to the 2 main tick families, Argasidae (soft ticks) and Ixodidae (hard ticks). However, this evolutionary relationship must be confirmed by more extensive testing of additional tick species and expanded populations. (c) 2012 Elsevier GmbH. All rights reserved.
Resumo:
It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale cophylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on an average, wasps had sequences from 77% of 6 genes (5.6 kb), figs had sequences from 60% of 5 genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based cophylogenetic analyses further support the codiversification hypothesis. Biogeographic analyses indicate that the present-day distribution of fig and pollinator lineages is consistent with a Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term codiversification.
Resumo:
Heraclides brasiliensis (Lepidoptera: Papilionidae) larvae feed preferably on Piperaceae, foraging successfully on leaf tissues even though species of this contain high levels of secondary metabolites such as amides and lignans, associated with diverse biological activities including insecticidal properties. Studies examining the metabolism of chemical constituents in Piperaceae by insects are rare. In this study, we characterized the metabolites of 4-nerolidylcatechol (4-NC), the major constituent of Piper umbellata (Piperaceae), and E-2,3-dihydro-3-(3,4-dihydroxyphenyl)farnesoic acid, compounds from fecal material of H. brasiliensis larvae fed a diet containing only P. umbellata leaves. The biotransformed product was also detected in larval and pupal tissues. Moreover, we observed deactivation of the toxicity of P. umbellata leaves against brine shrimp after their metabolism in H. brasiliensis larvae from a LC50 of 523.3 to 3,460.7 mu g/mL. This deactivation is closely associated with the biotransformation of 4-NC to E-2,3-dihydro-3-(3,4-dihydroxyphenyl)farnesoic acid, which showed LC50 of 8.0 and >1,000 mu g/mL, respectively.
Resumo:
Recent studies on the obligate interaction between fig trees and their pollinating agaonid wasps have focused on population aspects and wasp-seed exploitation at the level of the inflorescence. Detailed studies on larval and gall development are required to more fully understand how resources are exploited and adaptations fine-tuned by each partner in nursery pollination mutualisms. We studied the larval development of the active pollinating fig wasp, Pegoscapus sp., and the galling process of individual flowers within the figs of its monoecious host, Ficus citrifolia, in Brazil. The pollinator development is strongly dependent on flower pollination. Figs entered by pollen-free wasps were in general more likely to abort. Retained, unpollinated figs had both higher larval mortality and a lower number of wasps. Pegoscapus sp. larvae are adapted to plant development, with two contrasting larval feeding strategies proceeding alongside gall development. The first two larval stages behave as ovary parasites. Later larval stages feed on hypertrophied endosperm. This indicates that a successful galling process relies on endosperm, and also reveals why pollination would be a prerequisite for the production of high-quality galls for this Pegoscapus species.
Resumo:
Despite the general belief that the interaction between extrafloral nectaries (EFNs) and ants is mutualistic, the defensive function of EFNs has been poorly documented in South American savannas. In this article, we evaluate the potential impact of EFNs (benefits and costs) on two species of plants from the dry areas of Central Brazil, Anemopaegma album and Anemopaegma scabriusculum (Bignoniaceae). In particular, we characterize the composition of substances secreted by the EFNs, test whether EFNs attract ants, and whether ants actually present a defensive role, leading to reduced herbivory and increased plant fitness. Histochemical analyses indicated that EFNs from both species of Anemopaegma secrete an exudate that is composed of sugars, and potentially lipids and proteins. Furthermore, EFNs from both species were shown to present a significant role in ant attraction. However, contrary to common expectations, ants were not found to protect plants against herbivore attack. No effect was found between ant visitation and flower or fruit production in A. album, while the presence of ants led to a significant decrease in flower production in A. scabriusculum. These results suggest that EFNs might present a similar cost and benefit in A. album, and a higher cost than benefit in A. scabriusculum. Since the ancestor of Anemopaegma occupied humid forests and already presented EFNs that were maintained in subsequent lineages that occupied savannas, we suggest that phylogenetic inertia might explain the presence of EFNs in the species of Anemopaegma in which EFNs lack a defensive function.