3 resultados para CMP
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this work, barium zirconate (BaZrO3) ceramics synthesized by solid state reaction method and sintered at 1670 degrees C for 4 h were characterized by X-ray diffraction (XRD), Rietveld refinement, and Fourier transform infrared (FT-IR) spectroscopy. XRD patterns, Rietveld refinement data and FT-IR spectra which confirmed that BaZrO3 ceramics have a perovskite-type cubic structure. Optical properties were investigated by ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) measurements. UV-vis absorption spectra suggested an indirect allowed transition with the existence of intermediary energy levels within the band gap. Intense visible green PL emission was observed in BaZrO3 ceramics upon excitation with a 350 nm wavelength. This behavior is due to a majority of deep defects within the band gap caused by symmetry breaking in octahedral [ZrO6] clusters in the lattice. The microwave dielectric constant and quality factor were measured using the method proposed by Hakki-Coleman. The dielectric resonator antenna (DRA) was investigated experimentally and numerically using a monopole antenna through an infinite ground plane and Ansoft's high frequency structure simulator software, respectively. The required resonance frequency and bandwidth of DRA were investigated by adjusting the dimension of the same material. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Introduction. Endomyocardial biopsy (EMB) plays an important role in allograft surveillance to screen an acute rejection episode after heart transplantation (HT), to diagnose an unknown cause of cardiomyopathies (CMP) or to reveal a cardiac tumor. However, the procedure is not risk free. Objective. The main objective of this research was to describe our experience with EMB during the last 33 years comparing surgical risk between FIT versus no-HT patients. Method. We analyzed retrospectively the data of 5347 EMBs performed from 1978 to 2011 (33 years). For surveillance of acute rejection episodes after HT we performed 3564 (66.7%), whereas 1777 (33.2%) for CMP diagnosis, and 6 (1.0%) for cardiac tumor identification. Results. The main complications due to EMB were divided into 2 groups to facilitate analysis: major complications associated with potential death risk, and minor complications. The variables that showed a significant difference in the HT group were as follows: tricuspid Injury (.0490) and coronary fistula (.0000). Among the no-HT cohort they were insufficient fragment (.0000), major complications (.0000) and total complications (.0000). Conclusions. EMB can be accomplished with a low risk of complications and high effectiveness to diagnose CMP and rejection after HT. However, the risk is great among patients with CMP due to their anatomic characteristics. Children also constitute a risk group for EMB due to their small size in addition to the heart disease. The risk of injury to the tricuspid valve was higher among the HT group.
Resumo:
It is a well-established fact that statistical properties of energy-level spectra are the most efficient tool to characterize nonintegrable quantum systems. The statistical behavior of different systems such as complex atoms, atomic nuclei, two-dimensional Hamiltonians, quantum billiards, and noninteracting many bosons has been studied. The study of statistical properties and spectral fluctuations in interacting many-boson systems has developed interest in this direction. We are especially interested in weakly interacting trapped bosons in the context of Bose-Einstein condensation (BEC) as the energy spectrum shows a transition from a collective nature to a single-particle nature with an increase in the number of levels. However this has received less attention as it is believed that the system may exhibit Poisson-like fluctuations due to the existence of an external harmonic trap. Here we compute numerically the energy levels of the zero-temperature many-boson systems which are weakly interacting through the van der Waals potential and are confined in the three-dimensional harmonic potential. We study the nearest-neighbor spacing distribution and the spectral rigidity by unfolding the spectrum. It is found that an increase in the number of energy levels for repulsive BEC induces a transition from a Wigner-like form displaying level repulsion to the Poisson distribution for P(s). It does not follow the Gaussian orthogonal ensemble prediction. For repulsive interaction, the lower levels are correlated and manifest level-repulsion. For intermediate levels P(s) shows mixed statistics, which clearly signifies the existence of two energy scales: external trap and interatomic interaction, whereas for very high levels the trapping potential dominates, generating a Poisson distribution. Comparison with mean-field results for lower levels are also presented. For attractive BEC near the critical point we observe the Shnirelman-like peak near s = 0, which signifies the presence of a large number of quasidegenerate states.