10 resultados para CLOSED ORBIT

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The existing characterization of stability regions was developed under the assumption that limit sets on the stability boundary are exclusively composed of hyperbolic equilibrium points and closed orbits. The characterizations derived in this technical note are a generalization of existing results in the theory of stability regions. A characterization of the stability boundary of general autonomous nonlinear dynamical systems is developed under the assumption that limit sets on the stability boundary are composed of a countable number of disjoint and indecomposable components, which can be equilibrium points, closed orbits, quasi-periodic solutions and even chaotic invariant sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a space X is pseudocompact if it is Tychonoff and every real-valued continuous function on X is bounded. We obtain conditions under which a Tychonoff space is maximal pseudocompact and study conditions under which a regular space is maximal R-closed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to correlate the trochlear shape and patellar tilt angle and lateral patellar displacement at rest and maximal voluntary isometric contraction (MVIC) exercises during open (OKC) and closed kinetic chain (CKC) in subjects with and without anterior knee pain. Subjects were all women, 20 who were clinically healthy and 19 diagnosed with anterior knee pain. All subjects were evaluated and subjected to magnetic resonance exams during OKC and CKC exercise with the knee placed at 15, 30, and 45 degrees of flexion. The parameters evaluated were sulcus angle, patellar tilt angle and patellar displacement using bisect offset. Pearson's r coefficient was used, with p < .05. Our results revealed in knee pain group during CKC and OKC at 15 degrees that the increase in the sulcus angle is associated with a tilt increase and patellar lateral displacement. Comparing sulcus angle, patellar tilt angle and bisect offset values between MVIC in OKC and CKC in the knee pain group, it was observed that patellar tilt angle increased in OKC only with the knee flexed at 30 degrees. Based on our results, we conclude that reduced trochlear depth is correlated with increased lateral patellar tilt and displacement during OKC and CKC at 15 degrees of flexion in people with anterior knee pain. By contrast, 30 degrees of knee flexion in CKC is more recommended in rehabilitation protocols because the patella was more stable than in other positions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various types of trill exercises have been used for a long time as a tool in the treatment and preparation of the voice. Although they are reported to produce vocal benefits in most subjects, their physiology has not yet been studied in depth. The aim of this study was to compare the mean and standard deviation of the closed quotient in exercises of lip and tongue trills with the sustained vowel /epsilon/ in opera singers. Ten professional classical (operatic) singers, reportedly in perfect laryngeal health, served as subjects for this study and underwent electroglottography. During the examination, the subjects were instructed to deliver the sustained vowel /epsilon/ and lip and tongue trills in a same preestablished frequency and intensity. The mean values and standard deviation of the closed quotient were obtained using the software developed for this purpose. The comparison of the results was intrasubjects; maximum intensities were compared only among them and so were minimum intensities. The means of closed quotient were statistically significant only in the strong intensities, and the lip trill was different from the tongue trill and the sustained vowel /epsilon/. The standard deviation of the closed quotient distinguished the sustained vowel /epsilon/ from the lip and tongue trills in the two intensities. We concluded that there is oscillation of the closed quotient during the exercises of tongue and lip trills, and the closed quotient is higher during the performance of exercises of the lip trill, when compared with the two other utterances, only in the strong intensities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme [L.G. Ferreira, M. Marques, L.K. Teles, Phys. Rev. B 78 (2008) 125116] to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 +/- 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of M-p = 2.8 +/- 0.3 M-Jup, a radius of R-pl = 1.05 +/- 0.13 R-Jup, a density of approximate to 3 gcm(-3). RV data also clearly reveal a nonzero eccentricity of e = 0.16 +/- 0.02. The planet orbits a mature G0 main sequence star of V = 15.5 mag, with a mass M-star = 1.14 +/- 0.08 M-circle dot, a radius R-star = 1. 61 +/- 0.18 R-circle dot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of contraction of a planet at this mass, given the age of the system. On the other hand, at such an age, circularization is expected to be completed. In fact, we show that for this planetary mass and orbital distance, any initial eccentricity should not totally vanish after 7 Gyr, as long as the tidal quality factor Q(p) is more than a few 10(5), a value that is the lower bound of the usually expected range. Even if CoRoT-23b features a density and an eccentricity that are atypical of a hot Jupiter, it is thus not an enigmatic object.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study the effects of a longitudinal periodic potential on a parabolic quantum wire defined in a two-dimensional electron gas with Rashba spin-orbit interaction. For an infinite wire superlattice we find, by direct diagonalization, that the energy gaps are shifted away from the usual Bragg planes due to the Rashba spin-orbit interaction. Interestingly, our results show that the location of the band gaps in energy can be controlled via the strength of the Rashba spin-orbit interaction. We have also calculated the charge conductance through a periodic potential of a finite length via the nonequilibrium Green's function method combined with the Landauer formalism. We find dips in the conductance that correspond well to the energy gaps of the infinite wire superlattice. From the infinite wire energy dispersion, we derive an equation relating the location of the conductance dips as a function of the (gate controllable) Fermi energy to the Rashba spin-orbit coupling strength. We propose that the strength of the Rashba spin-orbit interaction can be extracted via a charge conductance measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model predictive control (MPC) applications in the process industry usually deal with process systems that show time delays (dead times) between the system inputs and outputs. Also, in many industrial applications of MPC, integrating outputs resulting from liquid level control or recycle streams need to be considered as controlled outputs. Conventional MPC packages can be applied to time-delay systems but stability of the closed loop system will depend on the tuning parameters of the controller and cannot be guaranteed even in the nominal case. In this work, a state space model based on the analytical step response model is extended to the case of integrating time systems with time delays. This model is applied to the development of two versions of a nominally stable MPC, which is designed to the practical scenario in which one has targets for some of the inputs and/or outputs that may be unreachable and zone control (or interval tracking) for the remaining outputs. The controller is tested through simulation of a multivariable industrial reactor system. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has received great attention due to its exceptional properties, which include corners with zero effective mass, extremely large mobilities, this could render it the new template for the next generation of electronic devices. Furthermore it has weak spin orbit interaction because of the low atomic number of carbon atom in turn results in long spin coherence lengths. Therefore, graphene is also a promising material for future applications in spintronic devices - the use of electronic spin degrees of freedom instead of the electron charge. Graphene can be engineered to form a number of different structures. In particular, by appropriately cutting it one can obtain 1-D system -with only a few nanometers in width - known as graphene nanoribbon, which strongly owe their properties to the width of the ribbons and to the atomic structure along the edges. Those GNR-based systems have been shown to have great potential applications specially as connectors for integrated circuits. Impurities and defects might play an important role to the coherence of these systems. In particular, the presence of transition metal atoms can lead to significant spin-flip processes of conduction electrons. Understanding this effect is of utmost importance for spintronics applied design. In this work, we focus on electronic transport properties of armchair graphene nanoribbons with adsorbed transition metal atoms as impurities and taking into account the spin-orbit effect. Our calculations were performed using a combination of density functional theory and non-equilibrium Greens functions. Also, employing a recursive method we consider a large number of impurities randomly distributed along the nanoribbon in order to infer, for different concentrations of defects, the spin-coherence length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the secular effects of a long-lived Galactic spiral structure on the stellar orbits with mean radii close to the corotation resonance. By test-particle simulations and different spiral potential models with parameters constrained on observations, we verified the formation of a minimum with amplitude ∼30–40 per cent of the background disc stellar density at corotation. Such a minimum is formed by the secular angular momentum transfer between stars and the spiral density wave on both sides of corotation. We demonstrate that the secular loss (gain) of angular momentum and decrease (increase) of mean orbital radius of stars just inside (outside) corotation can counterbalance the opposite trend of exchange of angular momentum shown by stars orbiting the librational points L4/5 at the corotation circle. Such secular processes actually allow steady spiral waves to promote radial migration across corotation. We propose some pieces of observational evidence for the minimum stellar density in the Galactic disc, such as its direct relation to the minimum in the observed rotation curve of the Galaxy at the radius r ∼ 9 kpc (for R0 = 7.5 kpc), as well as its association with a minimum in the distribution of Galactic radii of a sample of open clusters older than 1Gyr. The closeness of the solar orbit adius to the corotation resonance implies that the solar orbit lies inside a ring of minimum surface density (stellar + gas). This also implies a correction to larger values for the estimated total mass of the Galactic disc, and consequently, a greater contribution of the disc componente to the inner rotation curve of the Galaxy.