9 resultados para CHEMICALLY-MODIFIED ELECTRODE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper describes the preparation, characterization, and use of poly (methylene blue) (PMB)-modified glassy carbon electrodes (GCE) (GCE-PMB) in the detection of the thiols L-cysteine (L-CySH) and N-acetyl cysteine (Acy), and the herbicide glyphosate (GLYP) in pH 5.3 aqueous solution. The polymer film prepared by electropolymerization showed different characteristics such as robustness, stability, and redox properties satisfactorily. The surface coverage concentration (Gamma) of PMB was found to be 7.90 x 10(-9) - mol cm(-2). Moreover, we observed strong adhesion of the polymer film to the electrode surface. The results using GCE-PMB as a sensor indicated that this modified electrode exhibited electrocatalytic activity toward the detection of thiols and glyphosate in 0.1 mol L-1 KO (pH 5.3). Meanwhile, strong adsorption of the analytes on the GCE-PMB electrodes was also observed. Otherwise, using a low concentration (1 x 10(-4) mol L-1) of L-cysteine and N-acetyl cysteine and 8.9 x 10(-6) mol L-1 of glyphosate, separately, it was possible to observe a well-defined electrochemical response, thus providing an opportunity to further understand the applicability of PMB as a sensor for amino acid-based molecules. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A novel amperometric sensor based on the incorporation of ruthenium oxide hexacyanoferrate (RuOHCF) into multiwalled carbon nanotubes (MWCNTs) immobilized on a glassy carbon electrode is described. Cyclic voltammetry experiments indicated that the cathodic reduction of hydrogen peroxide at the RuOHCF/MWCNTs100/GC modified electrode is facilitated, occurring at 0.0 V vs. Ag/AgCl/KCl(sat). Following the optimization of the experimental conditions, the proposed sensor presented excellent analytical properties for hydrogen peroxide determination, with a low limit of detection (4.7 mu mol L-1), a large dynamic concentration range (0.1-10 mmol L-1) and a sensitivity of 1280 mu A mmol(-1) L cm(-2). The usefulness of the RuOHCF/MWCNTs100/GC electrochemical sensor was confirmed by monitoring the consumption of hydrogen peroxide during the degradation of phenol by the Fenton reaction. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Caffeine determination using a fast-scan voltammetric procedure at a carbon fiber ultramicroelectrode (CF-UME) is described. The CF-UME was submitted to electrochemical pretreatment. Parameters such as number of acquisition cycles, scan rate, potential window, and the electrochemical surface pretreatment were optimized. Using the optimized conditions, it was possible to achieve a LDR from 10.0 up to 200 mu mol L-1, with a LOD of 3.33 mu mol L-1. The method has been applied in the determination of caffeine in commercial samples, with errors of 1.0-3.5% in relation to the label values and recoveries of 97-114% within the linear range.
Resumo:
We report an efficient alternative to obtain recessed microelectrodes device on gold electrode surface, in which mixed self-assembled monolayer of long and short carbon alkanethiol chains was used for this purpose. Development of the modified electrodes included the chemical adsorption of 11-mercaptoundecanoic acid and 2-mercaptoethanol solution, as well as their mixtures, on gold surface, resulting in the final mixed self-assembled monolayer configuration. For comparison, the electrochemical performance of self-assembled monolayer of 11-mercaptoundecanoic acid. 3-mercaptopropionic acid, 4-mercapto-1-butanol and 6-mercapto-1-hexanol modified electrodes was also investigated. It was verified that, in the mixed self-assembled monolayer, the 11-mercaptoundecanoic acid acts as a barrier for electron transfer while the short alkanethiol chair is deposited in an island-like shape through which electrons can be freely transferred to ions in solution, allowing electrochemical reactions to occur. The performance of the modified electrodes toward microelectrode behavior was investigated via cyclic voltammetry and electrochemical impedance spectroscopy measurements using [Fe(CN)(6)](3-/4-) redox couple as a probe. In this case, sigmoidal voltammetric responses were obtained, very similar to those observed for microelectrodes. Such behavior reinforces the proposition of electron transfer through the short alkanethiol chain layer and surface blockage by the long chain one. Electrochemical impedance results allowed calculated the mean radius value of each microelectrode disks of 3.8 mu m with about 22 mu m interval between them. The microelectrode environment provided by the mixed self-assembled monolayer can be conveniently used to provide an efficient catalytic conversion in biosensing applications. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Previous studies have shown that heparin induces vascular relaxation via integrin-dependent nitric oxide (NO)-mediated activation of the muscarinic receptor. The aim of this study was to identify the structural features of heparin that are necessary for the induction of vasodilatation. To address this issue, we tested heparin from various sources for their vasodilatation activities in the rat aorta ring. Structural and chemical characteristics of heparin, such as its molecular weight and substitution pattern, did not show a direct correlation with the vasodilation activity. Principal component analysis (PCA) of circular dichroism (CD), 1H-nuclear magnetic resonance (NMR) and vasodilation activity measurements confirmed that there is no direct relationship between the physico-chemical nature and vasodilation activity of the tested heparin samples. To further understand these observations, unfractionated heparin (UFH) from bovine intestinal mucosa, which showed the highest relaxation effect, was chemically modified. Interestingly, non-specific O- and N-desulfation of heparin reduced its anticoagulant, antithrombotic, and antihemostatic activities, but had no effect on its ability to induce vasodilation. On the other hand, chemical reduction of the carboxyl groups abolished heparin-induced vasodilation and reduced the affinity of heparin toward the extracellular matrix (ECM). In addition, dextran and dextran sulfate (linear non-sulfated and highly sulfated polysaccharides, respectively) did not induce significant relaxation, showing that the vasodilation activity of polysaccharides is neither charge-dependent nor backbone unspecific. Our results suggest that desulfated heparin molecules may be used as vasoactive agents due to their low side effects. J. Cell. Biochem. 113: 13591367, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
This work encompasses the direct electrodeposition of polypyrrole nanowires onto Au substrates using different electrochemical techniques: normal pulse voltammetry (NPV) and constant potential method with the aim in applying these films for the first time in ammonia sensing in solution. The performance of these nanowire-based sensors are compared and evaluated in terms of: film morphology (analyzed with scanning electron microscopy); their sensitivity towards ammonia; electrochemical and contact angle measurements. For nanowires prepared by NPV, the sensitivity towards ammonia increases with increasing amount of electrodeposited polypyrrole, as expected due to the role of polypyrrole as electrochemical transducer for ammonia oxidation. On the other hand, nanowires prepared potentiostatically displayed an unexpected opposite behavior, attributed to the lower conductivity of longer polypyrrole nanowires obtained through this technique. These results evidenced that the analytical and physico-chemical features of nanostructured sensors can differ greatly from those of their conventional bulky analogous. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The combination of semiconducting oxides and polyaniline in the nanoscale range may result in hybrid materials having enhanced properties, such as electrochromism and charge capacity. This paper reports the spectroscopic, morphological and electrochromic characterization of hybrid films made up of hexaniobate one-dimensional (1D) nanoscrolls and polyaniline prepared by the layer-by-layer assembly technique (LbL). Secondary electron imaging and backscattered electron imaging techniques performed using a scanning electron microscope showed that polyaniline is adsorbed on the hexaniobate nanoscrolls, which confirms the combination of the components in the nanoscale domain. UV-VIS-NIR electronic spectra of the LbL hybrid films showed the absorption tail in the NIR region, assigned to delocalized polarons of the polyaniline. Resonance Raman spectra in the 1000-1700 cm(-1) range indicated that hybrid films present a higher relative intensity of polaron bands at 1337 and 1508 cm(-1) than pristine polyaniline in the emeraldine salt form. These results suggest that hexaniobate nanoscrolls induce a secondary doping of polyaniline. The cyclic voltammetry (CV) data for the hybrid film showed a specific capacity of 870 C cm(-3). According to CV results, the synergistic effect on charge storage properties of the hybrid material is attributed to the enhanced electroactivity of the hexaniobate component in the LbL film. Spectroelectrochemical experiments showed that the electrochromic efficiencies at 420 nm are ca. -41 and 24 cm(2) C-1 as the potential changes from 0.8 to -0.9 V and from -0.9 to -1.8 V, respectively, whereas at 800 nm the efficiencies are ca. -55 and 8 cm(2) C-1 for the same potential ranges. The electrochromic efficiencies and multi-colour character of the LbL film of hexaniobate nanoscrolls and polyaniline indicate that this novel hybrid material is an interesting modified electrode for electrochromic devices.
Resumo:
In this study, a novel material for the electrochemical determination of bisphenol A using a nanocomposite based on multi-walled carbon nanotubes modified with antimony nanoparticles has been investigated. The morphology, structure, and electrochemical performance of the nanocomposite electrodes were characterised by field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, and cyclic voltammetry. A scan rate study and electrochemical impedance spectroscopy showed that the bisphenol A oxidation product is adsorbed on nanocomposite electrode surface. Differential pulse voltammetry in phosphate buffer solution at pH 6, allowed the development of a method to determine bisphenol A levels in the range of 0.5-5.0 mu mol L-1, with a detection limit of 5.24 nmol L-1 (1.19 mu g L-1). (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Molecularly imprinted polymers (MIP's) have been applied in several areas of analytical chemistry, including the modification of electrodes. The main purpose of such modification is improving selectivity; however, a gain in sensitivity was also observed in many cases. The most frequent approaches for these modifications are the electrodeposition of polymer films and sol gel deposits, spin and drop coating and self-assembling of films on metal nanoparticles. The preparation of bulk (body) modified composites as carbon pastes and polymer agglutinated graphite have also been investigated. In all cases several analytes including pharmaceuticals, pesticides, and inorganic species, as well as molecules with biological relevance have been successfully used as templates and analyzed with such devices in electroanalytical procedures. Herein, 65 references are presented concerning the general characteristics and some details related to the preparation of MIP's including a description of electrodes modified with MIP's by different approaches. The results using voltammetric and amperometric detection are described.