5 resultados para CEPHALOMETRIC ANALYSIS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
INTRODUCTION: In orthodontics, determining the facial type is a key element in the prescription of a correct diagnosis. In the early days of our specialty, observation and measurement of craniofacial structures were done directly on the face, in photographs or plaster casts. With the development of radiographic methods, cephalometric analysis replaced the direct facial analysis. Seeking to validate the analysis of facial soft tissues, this work compares two different methods used to determining the facial types, the anthropometric and the cephalometric methods. METHODS: The sample consisted of sixty-four Brazilian individuals, adults, Caucasian, of both genders, who agreed to participate in this research. All individuals had lateral cephalograms and facial frontal photographs. The facial types were determined by the Vert Index (cephalometric) and the Facial Index (photographs). RESULTS: The agreement analysis (Kappa), made for both types of analysis, found an agreement of 76.5%. CONCLUSIONS: We concluded that the Facial Index can be used as an adjunct to orthodontic diagnosis, or as an alternative method for pre-selection of a sample, avoiding that research subjects have to undergo unnecessary tests.
Resumo:
Objective: To evaluate numerically the facial profile of children with isolated Pierre Robin sequence (PRS) and to compare them with a control group that has no pathologies and exhibits regular and balanced facial growth, with no skeletal alterations. Patients: Eighty-three children aged 5 to 10 years (PRS group, n = 60; control group, n = 23) were selected. Setting: Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo (HRAC-USP). Children from the control group were taken from the program of Interceptive Orthodontics at HRAC-USP. Design: Angular and ratio analyses of the facial profiles in both groups were realized through digital photographs. The PRS group was subdivided into two groups-complete and incomplete-according to the sagittal extension of the cleft palate, to investigate the possible influence of cleft extension on the face. Results: The facial convexity angle and the facial inferior third angle were considerably higher in the PRS groups than in the control group and were not significantly different between PRS groups. Nasolabial angle did not differ between groups. Conclusion: The facial profile was more convex in individuals with PRS than in those with regular facial growth and with no pathology. The mandible was responsible for the convexity of the profile in PRS because of its lack off anterior projection. An important relationship between the extension of the cleft palate and alterations in facial profile in PRS was not observed.
Resumo:
Objective: To correlate sleep apnea with craniofacial characteristics and facial patterns according to gender. Methods: In this prospective survey we studied 77 male and female children (3-12 years old) with an upper airway obstruction due to tonsil and adenoid enlargement. Children with lung problems, neurological disorders and syndromes, obstructive septal deviation, previous orthodontic treatment, orthodontic surgeries or oral surgeries, or obesity were excluded. Patients were subjected to physical examinations, nasal fiberoptic endoscopy, teleradiography for cephalometric analysis, and polysomnography. Methods: Cephalometric analysis included the following skeletal craniofacial measurements: facial axis (FA), facial depth (FD), mandibular plane angle (MP), lower facial height (LFH), mandibular arch (MA), and vertical growth coefficient (VERT) index. Results: The prevalence of sleep apnea was 46.75% with no statistical difference between genders. Among children with obstructive sleep apnea (Apneia Hypopnea Index - AHI >= 1) boys had higher AHI values than girls. A predominance of the dolichofacial pattern (81.9%) was observed. The following skeletal craniofacial measurements correlated with AHI in boys: FD (r(s) = -0.336/p = 0.020), MP (r(s) = 0.486/p = 0.00), and VERT index (r(s) = -0.337/p = 0.019). No correlations between craniofacial measurements and AHI were identified in girls. Conclusions: Craniofacial morphology may influence the severity of sleep apnea in boys but not in girls. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Introduction: The aims of this meta-analysis were to quantify and to compare the amounts of distalization and anchorage loss of conventional and skeletal anchorage methods in the correction of Class II malocclusion with intraoral distalizers. Methods: The literature was searched through 5 electronic databases, and inclusion criteria were applied. Articles that presented pretreatment and posttreatment cephalometric values were preferred. Quality assessments of the studies were performed. The averages and standard deviations of molar and premolar effects were extracted from the studies to perform a meta-analysis. Results: After applying the inclusion and exclusion criteria, 40 studies were included in the systematic review. After the quality analysis, 2 articles were classified as high quality, 27 as medium quality, and 11 as low quality. For the meta-analysis, 6 studies were included, and they showed average molar distalization amounts of 3.34 mm with conventional anchorage and 5.10 mm with skeletal anchorage. The meta-analysis of premolar movement showed estimates of combined effects of 2.30 mm (mesialization) in studies with conventional anchorage and 4.01 mm (distalization) in studies with skeletal anchorage. Conclusions: There was scientific evidence that both anchorage systems are effective for distalization; however, with skeletal anchorage, there was no anchorage loss when direct anchorage was used.
Resumo:
Objective: This study evaluated the variations in the anterior cranial base (S-N), posterior cranial base (S-Ba) and deflection of the cranial base (SNBa) among three different facial patterns (Pattern I, II and III). Method: A sample of 60 lateral cephalometric radiographs of Brazilian Caucasian patients, both genders, between 8 and 17 years of age was selected. The sample was divided into 3 groups (Pattern I, II and III) of 20 individuals each. The inclusion criteria for each group were the ANB angle, Wits appraisal and the facial profile angle (G’.Sn.Pg’). To compare the mean values obtained from (SNBa, S-N, S-Ba) each group measures, the ANOVA test and Scheffé’s Post-Hoc test were applied. Results and Conclusions: There was no statistically significant difference for the deflection angle of the cranial base among the different facial patterns (Patterns I, II and III). There was no significant difference for the measures of the anterior and posterior cranial base between the facial Patterns I and II. The mean values for S-Ba were lower in facial Pattern III with statistically significant difference. The mean values of S-N in the facial Pattern III were also reduced, but without showing statistically significant difference. This trend of lower values in the cranial base measurements would explain the maxillary deficiency and/or mandibular prognathism features that characterize the facial Pattern III.