3 resultados para CDTE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this work, the energy response functions of Si(Li), SDD and CdTe detectors were studied in the mammographic energy range through Monte Carlo simulation. The code was modified to take into account carrier transport effects and the finite detector energy resolution. The results obtained show that all detectors exhibit good energy response at low energies. The most important corrections for each detector were discussed, and the corrected mammographic x-ray spectra obtained with each one were compared. Results showed that all detectors provided similar corrected spectra, and, therefore, they could be used to accurate mammographic x-ray spectroscopy. Nevertheless, the SDD is particularly suitable for clinic mammographic x-ray spectroscopy due to the easier correction procedure and portability. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme [L.G. Ferreira, M. Marques, L.K. Teles, Phys. Rev. B 78 (2008) 125116] to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work presents a study on the effects of the particle size, material concentration and radiation energy on the X-ray absorption. CuO nanoparticles and microparticles were incorporated separately into a polymeric resin in concentrations of 5%, 10% and 30% relative to the resin mass. X-ray absorption by these materials was analyzed with a CdTe detector. The X-ray absorption is higher for the nanostructured material compared to the microstructured one for low energy X-ray beams for all CuO concentrations. (c) 2011 Elsevier Ltd. All rights reserved.