2 resultados para CDR
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Alzheimer's disease (AD) is the most common cause of dementia in the human population, characterized by a spectrum of neuropathological abnormalities that results in memory impairment and loss of other cognitive processes as well as the presence of non-cognitive symptoms. Transcriptomic analyses provide an important approach to elucidating the pathogenesis of complex diseases like AD, helping to figure out both pre-clinical markers to identify susceptible patients and the early pathogenic mechanisms to serve as therapeutic targets. This study provides the gene expression profile of postmortem brain tissue from subjects with clinic-pathological AD (Braak IV, V, or V and CERAD B or C; and CDR >= 1), preclinical AD (Braak IV, V, or VI and CERAD B or C; and CDR = 0), and healthy older individuals (Braak <= II and CERAD 0 or A; and CDR = 0) in order to establish genes related to both AD neuropathology and clinical emergence of dementia. Based on differential gene expression, hierarchical clustering and network analysis, genes involved in energy metabolism, oxidative stress, DNA damage/repair, senescence, and transcriptional regulation were implicated with the neuropathology of AD; a transcriptional profile related to clinical manifestation of AD could not be detected with reliability using differential gene expression analysis, although genes involved in synaptic plasticity, and cell cycle seems to have a role revealed by gene classifier. In conclusion, the present data suggest gene expression profile changes secondary to the development of AD-related pathology and some genes that appear to be related to the clinical manifestation of dementia in subjects with significant AD pathology, making necessary further investigations to better understand these transcriptional findings on the pathogenesis and clinical emergence of AD.
Resumo:
Yield mapping represents the spatial variability concerning the features of a productive area and allows intervening on the next year production, for example, on a site-specific input application. The trial aimed at verifying the influence of a sampling density and the type of interpolator on yield mapping precision to be produced by a manual sampling of grains. This solution is usually adopted when a combine with yield monitor can not be used. An yield map was developed using data obtained from a combine equipped with yield monitor during corn harvesting. From this map, 84 sample grids were established and through three interpolators: inverse of square distance, inverse of distance and ordinary kriging, 252 yield maps were created. Then they were compared with the original one using the coefficient of relative deviation (CRD) and the kappa index. The loss regarding yield mapping information increased as the sampling density decreased. Besides, it was also dependent on the interpolation method used. A multiple regression model was adjusted to the variable CRD, according to the following variables: spatial variability index and sampling density. This model aimed at aiding the farmer to define the sampling density, thus, allowing to obtain the manual yield mapping, during eventual problems in the yield monitor.