2 resultados para CCR2
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Introduction: Cytokines and chemokines regulate bone remodeling during orthodontic tooth movement. CC chemokine ligand 2 (CCL2) is involved in osteoclast recruitment and activity, and its expression is increased in periodontal tissues under mechanical loading. In this study, we investigated whether the CC chemokine receptor 2 (CCR2)-CCL2 axis influences orthodontic tooth movement. Methods: A coil spring was placed in CCR2-deficient (CCR2(-/-)), wild-type, vehicle-treated, and P8A-treated (CCL2 analog) mice. In a histopathologic analysis, the amounts of orthodontic tooth movement and numbers of osteoclasts were determined. The expression of mediators involved in bone remodeling was evaluated by real-time polymerase chain reaction. Results: Orthodontic tooth movement and the number of TRAP-positive cells were significantly decreased in CCR2(-/-) and P8A-treated mice in relation to wild-type and vehicle-treated mice, respectively. The expressions of RANKL, RANK, and osteoblasts markers (COL-1 and OCN) were lower in CCR2(-/-) than in wild-type mice. No significant difference was found in osteoprotegerin levels between the groups. Conclusions: These data suggested a reduction of osteoclast and osteoblast activities in the absence of CCR2. The CCR2-CCL2 axis is positively associated with osteoclast recruitment, bone resorption, and orthodontic tooth movement. Therefore, blockage of the CCR2-CCL2 axis might be used in the future for modulating the extent of orthodontic tooth movement. (Am J Orthod Dentofacial Orthop 2012;141:153-60)
Resumo:
Monocytes have been categorized in three main subpopulations based on CD14 and CD16 surface expression. Classical monocytes express the CD14(++)CD16(-) CCR2(+) phenotype and migrate to inflammatory sites by quickly responding to CCL2 signaling. Here, we identified and characterized the expansion of a novel monocyte subset during HIV and SIV infection, which were undistinguishable from classical monocytes, based on CD14 and CD16 expression, but expressed significantly lower surface CCR2. Transcriptome analysis of sorted cells demonstrated that the CCR2(low/neg) cells are a distinct subpopulation and express lower levels of inflammatory cytokines and activation markers than their CCR2(high) counterparts. They exhibited impaired phagocytosis and greatly diminished chemotaxis in response to CCL2 and CCL7. In addition, these monocytes are refractory to SIV infection and suppress CD8(+) T cell proliferation in vitro. These cells express higher levels of STAT3 and NOS2, suggesting a phenotype similar to monocytic myeloid-derived cells, which suppress expansion of CD8(+) T cells in vivo. They may reflect an antiproliferative response against the extreme immune activation observed during HIV and SIV infections. In addition, they may suppress antiviral responses and thus, have a role in AIDS pathogenesis. Antiretroviral therapy in infected macaque and human subjects caused this population to decline, suggesting that this atypical phenotype is linked to viral replication. J. Leukoc. Biol. 91: 803-816; 2012.