7 resultados para CARBONATITE MELTS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The early phase of post-collisional granitic magmatism in the Camboriu region, south Brazil, is represented by the porphyritic biotite +/- hornblende Rio Pequeno Granite (RPG; 630-620 Ma) and the younger (similar to 610 Ma), equigranular, biotite +/- muscovite Serra dos Macacos Granite (SMG). The two granite types share some geochemical characteristics, but the more felsic SMG constitutes a distinctive group not related to RPG by simple fractionation processes, as indicated by its lower FeOt, TiO2, K2O/Na2O and higher Zr Al2O3, Na2O, Ba and Sr when compared to RPG of similar SiO2 range. Sr-Nd-Pb isotopes require different sources. The SMG derives from old crustal sources, possibly related to the Paleoproterozoic protoliths of the Camboriu Complex, as indicated by strongly negative epsilon Nd-t (-23 to -24) and unradiogenic Pb (e.g., Pb-206/Pb-204 = 16.0-16.3; Pb-207/Pb-204 = 15.3-15.4) and confirmed by previous LA-MC-ICPMS data showing dominant zircon inheritance of Archean to Paleoproterozoic age. In contrast, the RPG shows less negative epsilon Nd-t (-12 to -15) and a distinctive zircon inheritance pattern with no traces of post-1.6 Ga sources. This is indicative of younger sources whose significance in the regional context is still unclear; some contribution of mantle-derived magmas is indicated by coeval mafic dykes and may account for some of the geochemical and isotopic characteristics of the least differentiated varieties of the RPG. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas despite their emplacement within a low-strain zone. It may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of Paleoproterozoic orthogneisses from the Camboriu Complex. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks ((87)Sr/(86)Sr = 0.70661-0.70754 and (143)Nd/(144)Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.
Resumo:
The Neoproterozoic post-collisional period in southern Brazil (650-580 Ma) is characterized by substantial volumes of magma emplaced along the active shear zones that compose the Southern Brazilian Shear Belt. The early-phase syntectonic magmatism (630-610 Ma) is represented by the porphyritic, high-K, metaluminous to peraluminous Quatro Ilhas Granitoids and the younger heterogranular, slightly peraluminous Mariscal Granite. Quatro II has Granitoids include three main petrographic varieties (muscovite-biotite granodiorite mbg; biotite monzogranite - bmz: and leucogranite - lcg) that, although sharing some significant geochemical characteristics, are not strictly comagmatic, as shown by chemical and Sr-Nd-Pb isotope data. The most primitive muscovite-biotite granodiorite was produced by contamination of more mafic melts (possibly with some mantle component) with peraluminous crustal melts; the biotite monzogranite, although more felsic, has higher Ca, MgO,TiO2 and Ba, and lower K2O, FeOt, Sr and Rb contents, possibly reflecting some mixing with coeval mafic magmas of tholeiitic affinity; the leucogranite may be derived from pure crustal melts. The Mariscal Granite is formed by two main granite types which occur intimately associated in the same pluton, one with higher K (5-6.5 wt.% K2O) high Rb and lower CaO, Na2O, Ba and Zr as compared to the other (3-5 wt.% of K2O). The two Mariscal Granite varieties have compositional correspondence with fine-grained granites (fgg) that occur as tabular bodies which intruded the Quatro Ilhas Granoitoids before they were fully crystallized, and are inferred to correspond to the Mariscal Granite feeders, an interpretation that is reinforced by similar U-Pb zircon crystallization ages. The initial evolution of the post-collisional magmatism, marked by the emplacement of the Quatro Ilhas Granitoids varieties, activated sources that produced mantle and crustal magmas whose emplacement was controlled both by flat-lying and transcurrent structures. The transition from thrust to transcurrent-related tectonics coincides with the increase in the proportion of crustal-derived melts. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas and may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of orthogneiss protoliths. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The NNW-trending Nova Lacerda tholeiitic dike swarm in Mato Grosso State, Central Brazil, intrudes the Nova Lacerda granite (1.46 Ga) and the Jauru granite-greenstone terrain (ca. 1.79-1.77 Ga). The swarm comprises diabases I and II and amphibolites emplaced at ca. 1.38 Ga. Geochemical data indicate that these are evolved tholeiites characterized by high LILE/HSFE and LREE/HSFE ratios. Isotopic modelling yields positive epsilon(Nd)(T) values (+0.86 to +2.65), whereas values for epsilon(Sr)(T) range from positive to negative (+1.96 to -5.56). Crustal contamination did not play a significant petrogenetic role, as indicated by a comparison of isotopic data (Sr-Nd) from both dikes and country rocks, and by the relationship between isotopic and geochemical parameters (SiO2, K2O, Rb/Sr, and La/Yb) of the dikes. We attribute the origin of these tholeiites to fractional crystallization of evolved melts derived from a heterogeneous mantle source. Comparison of the geochemical and isotopic data of the studied swarm and other tholeiitic Mesoproterozoic mafic intrusions of the SWAmazonian Craton the Serra da Providencia, Colorado, and Nova Brasilandia bimodal suites - indicates that parental melts of the Nova Lacerda swarm were derived from the most enriched mantle source. This enrichment was probably caused by the stronger influence of the EMI component on the DMM end-member. These data, coupled with trace element bulk-rock geochemistry of the country rocks, and comparisons with the Colorado Complex of similar age, suggest a continental-margin arc setting for the emplacement of the Nova Lacerda dikes.
Resumo:
Major and trace-element microanalyses of the main minerals from the 610 Ma Pedra Branca Syenite, southeast Brazil, allow inferences on intensive parameters of magmatic crystallization and on the partition of trace-elements among these minerals, with important implications for the petrogenetic evolution of the pluton. Two main syenite types make up the pluton, a quartz-free syenite with tabular alkali feldspar (laminated silica-saturated syenite, LSS, with Na-rich augite + phlogopite + hematite + magnetite + titanite + apatite) and a quartz-bearing syenite (laminated silica-oversaturated syenite, LSO, with scarce corroded plagioclase plus diopside + biotite +/- hornblende + ilmenite magnetite +/- titanite + apatite). Both types share a remarkable enrichment in incompatible elements as K, Ba, Sr, P and LREE. Apatite saturation temperatures of similar to 1060-1090 degrees C are the best estimates of liquidus, whereas the pressure of emplacement, based on Al-in-hornblende barometry, is estimated as 3.3 to 4.8 khan Although both units crystallized under oxidizing conditions, oxygen fugacity was probably higher in LSS, as shown by higher mg# of the mafic minerals and higher hematite contents in Hem-Ilm(ss). In contrast with the Ca-bearing alkali-feldspar from LSO, which hosts most of the whole-rock Sr and Pb, virtually Ca-free alkali-feldspar from LSS hosts similar to 50% of whole-rock Sr and similar to 80% of Pb, the remainder of these elements being shared by apatite, pyroxene and titanite. This contrast reflects a strong crystal-chemical control, whereby a higher proportion of an element with similar ratio and charge (Ca2+) enhances the residence of Sr and Pb in the M-site of alkali feldspar. The more alkaline character of the LSS magma is inferred to have inhibited zircon saturation; Zr + Hf remained in solution until late in the crystallization, and were mostly accommodated in the structure of Ca-Na pyroxene and titanite, which are one order of magnitude richer in these elements compared to the same minerals in LSO, where most of Zr and Hf are inferred to reside in zircon. The REE, Th and U reside mostly in titanite and apatite; D(REE)Tit/Ap raises steadily from 1 to 6 from La to Tb then remains constant up to Lu in the LSO sample; these values are about half as much in the LSS sample, where lower contents of incompatible elements in titanite are attributed to its greater modal abundance and earlier crystallization. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Basalts of the Parana continental flood basalt (PCFB) province erupted through dominantly Proterozoic continental crust during the Cretaceous. In order to examine the mantle source(s) of this major flood basalt province, we studied Os, Sr, Nd, and Pb isotope systematics, and highly siderophile element (HSE) abundances in tholeiitic basalts that were carefully chosen to show the minimal effects of crustal contamination. These basalts define a precise Re-Os isochron with an age of 131.6 +/- 2.3 Ma and an initial Os-187/Os-188 of 0.1295 +/- 0.0018 (gamma Os-187 = +2.7 +/- 1.4). This initial Os isotopic composition is considerably more radiogenic than estimates of the contemporary Depleted Mantle (DM). The fact that the Re-Os data define a well constrained isochron with an age similar to Ar-40/Ar-39 age determinations, despite generally low Os concentrations, is consistent with closed-system behavior for the HSE. Neodymium, Sr, and Pb isotopic data suggest that the mantle source of the basalts had been variably hybridized by melts derived from enriched mantle components. To account for the combined Os, Nd, Sr, and Pb isotopic characteristics of these rocks, we propose that the primary melts formed from metasomatized asthenospheric mantle (represented by arc-mantle peridotite) that underwent mixing with two enriched components, EM-I and EM-II. The different enriched components are reflected in minor isotopic differences between basalts from southern and northern portions of the province. The Tristan da Cunha hotspot has been previously suggested to be the cause of the Parana continental flood basalt magmatism. However, present-day Tristan da Cunha lavas have much higher Os-187/Os-188 isotopic compositions than the source of the PCFB. These data, together with other isotopic and elemental data, preclude making a definitive linkage between the Tristan plume and the PCFB. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A variety of seemingly unrelated processes, such as core-mantle interaction, desulfurization, and direct precipitation from a silicate melt have been proposed to explain the formation of Ru-Os-Ir alloys (here referred to as osmiridiums) found in terrestrial mantle rocks. However, no consensus has yet been reached on how these important micrometer-sized phases form. In this paper we report the results of an experimental study on the solubilities of Ru, Os and Ir in sulfide melts (or mattes) as a function of alloy composition at 1300 degrees C. Considering the low solubilities of Ru, Os, and Ir in silicate melts, coupled with their high matte/silicate-melt partition coefficients, our results indicate that these elements concentrate initially at the ppm level in a matte phase in the mantle source region. During partial melting, the extraction of sulfur into silicate melt leads to a decrease in fS(2) that triggers the exsolution of osmiridiums from the refractory matte in the residue. The newly formed osmiridiums may persist in the terrestrial mantle for periods exceeding billions of years. (C) 2012 Elsevier Ltd. All rights reserved.