3 resultados para C. Grandis L. Osbeck
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Huanglongbing (HLB) is associated with Candidatus Liberibacter spp., endogenous, sieve tube-restricted bacteria that are transmitted by citrus psyllid insect vectors. Transgenic expression in the phloem of specific genes that might affect Ca. Liberibacter spp. growth and development may be an adequate strategy to improve citrus resistance to HLB. To study specific phloem gene expression in citrus, we developed three different binary vector constructs with expression cassettes bearing the beta-glucuronidase (GUS) reporter gene (uidA) under the control of one of the three different promoters: Citrus phloem protein 2 (CsPP2), Arabidopsis thaliana phloem protein 2 (AtPP2), and Arabidopsis thaliana sucrose transporter 2 (AtSUC2). Transgenic lines of 'Hamlin', 'Pera', and 'Valencia' sweet oranges [Citrus sinensis (L.) Osbeck] were produced via Agrobacterium tumefaciens transformation. The epicotyl segments collected from in vitro germinated seedlings were used as explants. The gene nptII, which confers resistance to the antibiotic kanamycin, was used for selection. The transformation efficiency was expressed as the number of GUS-positive shoots over the total number of explants and varied from 1.54 to 6.08 % among the three cultivars and three constructs studied. Several lines of the three sweet orange cultivars analyzed using PCR and Southern blot analysis were genetically transformed with the three constructs evaluated. The histological GUS activity in the leaves indicates that the uidA gene was preferentially expressed in the phloem, which suggests that the use of the three promoters might be adequate for producing HLB-resistant transgenic sweet oranges. The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters. Key message The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters.
Resumo:
Huanglongbing (HLB) is a severe citrus (Citrus spp.) disease associated with the bacteria genus Candidatus Liberibacter, detected in Brazil in 2004. Another bacterium was found in association with HLB symptoms and characterized as a phytoplasma belonging to the 16SrIX group. The objectives of this study were to identify potential leafhopper vectors of the HLB-associated phytoplasma and their host plants. Leafhoppers were sampled every other week for 12 mo with sticky yellow cards placed at two heights (0.3 and 1.5 m) in the citrus tree canopy and by using a sweep net in the ground vegetation of two sweet orange, Citrus sinensis (L.) Osbeck, groves infected by the HLB-phytoplasma in Sao Paulo state. Faunistic analyses indicated one Agalliinae (Agallia albidula Uhler) and three Deltocephalinae [Balclutha hebe (Kirkaldy), Planicephalus flavicosta (Stal), and Scaphytopius (Convelinus) marginelineatus (Stal)] species, as the most abundant and frequent leafhoppers (Hemiptera: Cicadellidae). Visual observations indicated an association of leafhopper species with some weeds and the influence of weed species composition on leafhopper abundance in low-lying vegetation. S. marginelineatus and P. flavicosta were more frequent on Sida rhombifolia L. and Althernantera tenella Colla, respectively, whereas A. albidula was observed more often on Conyza bonariensis (L.) Cronq. and B. hebe only occurred on grasses. DNA samples of field-collected S. marginelineatus were positive by polymerase chain reaction and sequencing tests for the presence of the HLB-phytoplasma group, indicating it as a potential vector. The association of leafhoppers with their hosts may be used in deciding which management strategies to adopt against weeds and diseases in citrus orchards.
Resumo:
Gravena, R., Filho, R. V., Alves, P. L. C. A., Mazzafera, P. and Gravena, A. R. 2012. Glyphosate has low toxicity to citrus plants growing in the field. Can. J. Plant Sci. 92: 119-127. There has been controversy over whether glyphosate used for weed management in citrus fields causes significant toxicity to citrus plants. Glyphosate may be toxic to non-target plants exposed to accidental application or drift. This work evaluated glyphosate toxicity in plants of Valencia citrus (Citrus sinensis. L. Osbeck) grafted onto 'Rangpur lime' (Citrus limonia L. Osbeck) and citrumelo 'Swingle' (Poncirus trifoliata (L.) Raf x Citrus paradisi Mad) by trunk- or foliar-directed herbicide applications under field conditions. In the first experiment, glyphosate was sprayed at rates of 0, 90, 180, 260, 540, 1080 and 2160 g a.e. ha(-1) directly on the trunk to a height of 5 cm above the grafting region. In the second experiment, glyphosate was sprayed on the plant canopies at rates of 0, 0.036, 0.36, 3.6, 36, 360 and 720 g a.e. ha(-1). There was no visual damage caused by glyphosate applied directly to the trunk, but the plants were affected by glyphosate sprayed directly on the canopies at rates over 360 g a.e. ha(-1). The main symptom was observed in the new shoots formed after the application, indicating an effect on meristems. Little or no effect was observed in mature leaves. Eight days after application the levels of shikimate, total free amino acids and total phenolic compounds were unaffected. All plants affected by glyphosate recovered between 6 and 12 mo after the treatments. Therefore, despite some transient symptoms Valencia citrus grafted onto 'Rangpur lime' and citrumelo 'Swingle' were tolerant to glyphosate.