3 resultados para Bridges, Thomas
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Clyomys Thomas, 1916 is a semifossorial rodent genus of spiny rats represented by only one species, C. laticeps, which inhabits the tropical savannas and grasslands of central Brazil and eastern Paraguay. Here we describe a new karyotype of C. laticeps found in populations of Emas National Park, Goias state, Brazil. The four analyzed specimens had a diploid number (2n) of 32 and a fundamental autosome number (FN) of 54. Cytogenetic data include conventional staining, CBG and GTG-banding. The karyotype presents 12 meta/submetacentric pairs (1 to 12) and 3 pairs of acrocentrics (13 to 15) with gradual decrease in size. The X chromosome is a medium submetacentric and the Y is a medium acrocentric. The semifossorial habits together with habitat specificity could have contributed to the karyological variations found on this genus.
Resumo:
A new species of titi monkey, genus Callicebus Thomas, 1903, is described based on four individuals, one from a small tributary of the left bank of Rio Teles Pires, northern state of Mato Grosso, and three others from Largo do Souza, Rio Iriri, Pará, Brazil. The new species belongs to the Callicebus moloch species group, and the main diagnostic characteristics of the new species are the whitish forehead, sideburns and beard coloration, which are contiguous, forming a frame around the blackish face; overall body pelage coloration is pale grayish-brown agouti; hands, feet and tip of the tail whitish; belly and inner sides of fore and hind limbs uniformly orange. The pattern of pelage coloration and qualitative and quantitative skull morphology are described and compared to the other species of the Callicebus moloch group. Species of the Callicebus moloch group show great similarity in skull morphology and morphometrics, making the external morphological characters, specially the chromatic fields, the most reliable diagnostic trait to identify the species.
Resumo:
Because of its electronic properties, sulfur plays a major role in a variety of metabolic processes and, more in general, in the chemistry of life. In particular, S-S bridges between cysteines are present in the amino acid backbone of proteins. Protein disulfur radical anions may decay following different paths through competing intra and intermolecular routes, including bond cleavage, disproportionation, protein-protein cross linking, and electron transfer. Indeed, mass spectrometry ECD (electron capture dissociation massspectroscopy) studies have shown that capture of low-energy (<0.2 eV) electrons by multiply protonated proteins is followed by dissociation of S-S bonds holding two peptide chains together. In view of the importance of organic sulfur chemistry, we report on electron interactions with disulphide bridges. To study these interactions we used as prototypes the molecules dimethyl sulfide [(CH3)2S] and dimethyl disulfide [(H3C)S2(CH3)]. We seek to better understand the electron-induced cleavage of the disulfide bond. To explore dissociative processes we performed electron scattering calculations with the Schwinger Multichannel Method with pseudopotentials (SMCPP), recently parallelized with OpenMP directives and optimized with subroutines for linear algebra (BLAS) and LAPACK routines. Elastic cross sections obtained for different S-S bond lengths indicate stabilization of the anion formed by electron attachment to a σ*SS antibonding orbital, such that dissociation would be expected.