5 resultados para Brasiliano
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We present field relationships, major and trace element geochemistry and U-Pb SHRIMP and ID-TIMS geochronology of the A-type Ordovician Quintas pluton located in the Ceara Central Domain of the Borborema Province, in northeastern Brazil. This pluton presents a concentric geometry and is composed mainly of syenogranite, monzogranite, quartz syenite to quartz monzodiorite, monzogabbro and diorite. Its geochemical characteristics [SiO2 (52-70%), Na2O/K2O (1.55-0.65), Fe2O3/MgO (2.2-7.3), metaluminous to sligthly alkaline affinity, post-collisional type in (Y + Nb) x Rb diagram, and A-type affinity (Ga > 22 ppm, Nb > 20 ppm, Zn > 60 ppm), REE fractioned pattern with negative Eu anomaly] are coherent with post-collisional A(2)-type granitoids. However, the emplacement of this pluton is to some extent temporally associated with the deposition of the first strata of the Parnaiba intracratonic basin, attesting also to a purely anorogenic character (A(1)-type granitoid). The emplacement of this pluton is preceded by one of the largest known orogenesis of the planet (Neoproterozoic Pan-African/Brasiliano) and, if it is classified as an A(2)-type granitoid, it provides interesting constraints about how long can last A(2)-type magmatic activity after a major collisional episode, arguably triggered by disturbance of the underlying mantle, a topic extensively debated in the geoscience community. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
New geochronological and geochemical constraints on Precambrian sedimentary and volcanic successions exposed in the western part of the Central Domain of the Borborema Province, NE Brazil, indicate the presence of two distinct tectono-stratigraphic complexes: Riacho Gravata and Sao Caetano. Both complexes and associated orthogneisses are referred in the literature as the Cariris Velhos belt, having depositional, extrusive, or intrusive ages within the interval 985-913 Ma. The Riacho Gravata complex consists of bimodal (but mostly felsic) volcanic and volcanoclastic rocks, muscovite+/-graphite schists, quartzites, and marble with local occurrences of banded-iron-formation. The Sao Caetano complex mainly consists of metagreywackes, marbles, calc-silicate rocks, and rare meta-mafic rocks. Meta-mafic rocks from both complexes have geochemical signatures similar to those of continental flood basalts, with epsilon Nd (1.0 Ga) values ranging from -1.0 to -2.8. Felsic volcanic rocks from the Riacho Gravata complex show epsilon Nd (1.0 Ga) values ranging from -1.0 to -7.4 and geochemical signatures similar to A(2)-type granitoids. New SHRIMP U-Pb zircon data from felsic volcanic rocks within the Riacho Gravata complex yielded ages of 1091 +/- 13 Ma and 996 +/- 13 Ma. In contrast, meta-graywackes from the Sao Caetano complex show a maximum deposition age of ca. 806 Ma in the northern part and ca. 862 Ma in the southern part of the outcrop area. The orthogneisses show epsilon Nd (1.0 Ga) values ranging from 1.0 to -4.2 with U/Pb TIMS and SHRIMP ages ranging from 960 to 926 Ma and geochemical signatures of A(2)-type granitoids. The data reported in this paper suggest at least two periods of extension within the Central Domain of the Borborema Province, the first starts ca. 1091 Ma with magmatism and deposition, creating the Riacho Gravata basin and continued intrusion of A-type granites to 920 Ma. A second rift event, which reactivated old faults, generated a basin with a maximum deposition age of ca. 806 Ma. Furthermore, the oldest granitoids cutting these metasedimentary rocks have crystallization ages of ca. 600 Ma. This suggests that the second rift event could be early Brasiliano in age. The resulting Sao Caetano basin received detritus from a variety of sources, although detritus from the Riacho Gravata complex dominated. Deposition ages of the Riacho Gravata and the Sao Caetano complexes are coeval with deposits in other basins of the Borborema Province (Riacho do Tigre in the Central Domain; Macurure and Maranco in the Sergipano Belt of the Southern domain). The Macaubas Group from SE Brazil and its counterparts in Africa, the Zadanian and Mayumbian Groups, in the western edge of the Congo Craton are also coeval. Closure of the Riacho Gravata and Sao Caetano basins occurred during the Brasiliano convergence (705-600 Ma). During the last stage of convergence, ca. 612 Ma, pull-apart basins were created and filled; final basin closure took place 605-592 Ma, after deposition ceased. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Dom Feliciano Belt, situated in southernmost Brazil and Uruguay, contains a large mass of granite-gneissic rocks (also known as Florianopolis/Pelotas Batholith) formed during the pre-, syn- and post-orogenic phases of the Brasiliano/Pan-African cycle. In the NE extreme of this granitic mass, pre-, syn- and post-tectonic granites associated with the Major Gercino Shear Zone (MGSZ) are exposed. The granitic manifestation along the MGSZ can be divided into pre-kinematic tonalitic gneisses, peraluminous high-K calcalkaline early kinematic shoshonitic, and metaluminous post-kinematic granites. U-Pb zircon data suggest an age of 649 +/- 10 Ma for the pre-tectonic gneisses, and a time span from 623 +/- 6 Ma to 588 +/- 3 Ma for the early to post-tectonic magmatism. Negative epsilon Hf (t) values ranging from -4.6 to -14.6 and Hf model ages ranging from 1.64 to 2.39 Ga for magmatic zircons coupled with whole rock Nd model ages ranging from 1.24 to 2.05 Ga and epsilon Nd (t) values ranging from -3.84 to -7.50, point to a crustal derivation for the granitic magmatism. The geochemical and isotope data support a continental magmatic arc generated from melting of dominant Paleoproterozoic crust, and a similar evolution for the granitic batholiths of the eastern Dom Feliciano Belt and western Kaoko Belt. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
In Eastern South America, a series of fault-bounded sedimentary basins that crop out from Southern Uruguay to Southeastern Brazil were formed after the main collisional deformation of the Brasiliano Orogeny and record the tectonic events that affected the region from the Middle Ediacaran onwards. We address the problem of discerning the basin-forming tectonics from the later deformational events through paleostress analysis of more than 600 fault-slip data, mainly from the Camaquã Basin (Southern Brazil), sorted by stratigraphic level and cross-cutting relationships of superposed striations, and integrated with available stratigraphic and geochronological data. Our results show that the Camaquã Basin was formed by at least two distinct extensional events, and that rapid paleostress changes took place in the region a few tens of million years after the major collision (c.a. 630 Ma), probably due to the interplay between local active extensional tectonics and the distal effects of the continued amalgamation of plates and terranes at the margins of the still-forming Gondwana Plate. Preliminary paleostress data from the Castro Basin and published data from the Itajaí Basin suggest that these events had a regional nature.
Resumo:
Neoproterozoic geologic and geotectonic processes were of utmost importance in forming and structuring the basement framework of the South-American platform. Two large domains with distinct evolutionary histories are identified with respect to the Neoproterozoic era: the northwest-west (Amazonian craton and surroundings) and the central-southeast (the extra-Amazonian domain). In the first domain, Neoproterozoic events occurred only locally and were of secondary significance, and the geologic events, processes, and structures of the pre-Neoproterozoic (and syn-Brasiliano) cratonic block were much more influential. In the second, the extra-Amazonian domain, the final evolution, structures and forms are assigned to events related to the development of a complex net of Neoproterozoic mobile belts. These in turn resulted in strong reworking of the older pre-Neoproterozoic basement. In this domain, four distinct structural provinces circumscribe or are separated by relatively small pre- Neoproterozoic cratonic nuclei, namely the Pampean, Tocantins, Borborema and Mantiqueira provinces. These extra-Amazonian provinces were formed by a complex framework of orogenic branching systems following a diversified post-Mesoproterozoic paleogeographic scenario. This scenario included many types of basement inliers as well as a diversified organization of accretionary and collisional orogens. The basement inliers date from the Archean toMesoproterozoic periods and are different in nature. The escape tectonics that operated during the final consolidation stages of the provinces were important to and responsible for the final forms currently observed. These latest events, which occurred from the Late Ediacaran to the Early Ordovician, present serious obstacles to paleogeographic reconstructions. Two groups of orogenic collage systems are identified. The older system from the Tonian (>850 Ma) period is of restricted occurrence and is not fully understood due to strong reworking subsequent to Tonian times. The second group of orogenies is more extensive and more important. Its development began with diachronic taphrogenic processes in the Early Cryogenian period (ca. 850e750 Ma) and preceded a complex scenario of continental, transitional and oceanic basins. Subsequent orogenies (post 800 Ma) were also created by diachronic processes that ended in the Early Ordovician. More than one orogeny (plate interaction) can be identified either in space or in time in every province. The orogenic processes were not necessarily synchronous in different parts of the orogenic system, even within the same province. This particular group of orogenic collage events is known as the “Brasiliano”. All of the structural provinces of the extra-Amazonian domain exhibit final events that are marked by extrusion processes, are represented by long lineaments, and are fundamental to unraveling the structural history of the Phanerozoic sedimentary basins.