9 resultados para Brain function

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Context: The aberrant processing of salience is thought to be a fundamental factor underlying psychosis. Cannabis can induce acute psychotic symptoms, and its chronic use may increase the risk of schizophrenia. We investigated whether its psychotic effects are mediated through an influence on attentional salience processing. Objective: To examine the effects of Delta 9-tetrahydrocannabinol (Delta 9-THC) and cannabidiol (CBD) on regional brain function during salience processing. Design: Volunteers were studied using event-related functional magnetic resonance imaging on 3 occasions after administration of Delta 9-THC, CBD, or placebo while performing a visual oddball detection paradigm that involved allocation of attention to infrequent (oddball) stimuli within a string of frequent (standard) stimuli. Setting: University center. Participants: Fifteen healthy men with minimal previous cannabis use. Main Outcome Measures: Symptom ratings, task performance, and regional brain activation. Results: During the processing of oddball stimuli, relative to placebo, Delta 9-THC attenuated activation in the right caudate but augmented it in the right prefrontal cortex. Delta 9-Tetrahydrocannabinol also reduced the response latency to standard relative to oddball stimuli. The effect of Delta 9-THC in the right caudate was negatively correlated with the severity of the psychotic symptoms it induced and its effect on response latency. The effects of CBD on task-related activation were in the opposite direction of those of Delta 9-THC; relative to placebo, CBD augmented left caudate and hippocampal activation but attenuated right prefrontal activation. Conclusions: Delta 9-Tetrahydrocannabinol and CBD differentially modulate prefrontal, striatal, and hippocampal function during attentional salience processing. These effects may contribute to the effects of cannabis on psychotic symptoms and on the risk of psychotic disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies have implicated adiponectin and other adipocytokines in brain function, particularly in processes related to memory and cognition. Blood levels of adiponectin are reduced in patients with primary cognitive disorders, such as Alzheimer's disease and mild cognitive impairment, and in adult patients with major depression. The aim of the present study is to determine serum levels of adiponectin in a sample of elderly patients with major depressive disorder (MOD) as compared to healthy older adults, and to examine the correlations between adiponectin levels and parameters indicative of mood and cognitive state. We recruited fifty-one unmedicated outpatients with late-life depression (LLD) and 47 age-matched controls in this study. The diagnosis of MDD was made according to the DSM-IV criteria, and the severity of depressive episode was determined with the 21-item Hamilton Depression Scale (HORS). Cognitive state was ascertained with the Cambridge Cognitive Test (CAMCOG) and the Mini-Mental State Examination (MMSE). Serum concentrations of adiponectin were determined using a sandwich ELISA method. Serum levels of adiponectin were significantly reduced in individuals with LLD (F = p < 0.001). Adiponectin level remained significantly reduced in after controlling for BMI index, scores on the CAMCOG, MMSE and HDRS and educational level (p < 0.001). Adiponectin levels showed a negative correlation with HORS scores (r = -0.59, p < 0.001) and BMI index (r = -0.42, p < 0.001); and showed a positive correlation with CAMCOG (r = 0.34, p < 0.01) and MMSE scores (r = 0.20, p = 0.05). The availability of circulating adiponectin is reduced in older adults with major depression, with likely implications on cognitive and mood state. Additional studies are required to determine whether this abnormality pertains to the pathophysiology of geriatric depression per se, or is a consequence of the morbid state. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and objectives: Extracorporeal circulation (ECC) may change drug pharmacokinetics as well as brain function. The objectives of this study are to compare emergence time and postoperative sedation intensity assessed by the bispectral index (BIS) and the Ramsay sedation scale in patients undergoing myocardial revascularization (MR) with or without ECC. Method: Ten patients undergoing MR with ECC (ECC group) and 10 with no ECC (no-ECC group) were administered with sufentanyl, propofol 2.0 mu g.mL(-1) and pancuronium target controlled infusion. After surgery, propofol infusion was reduced to 1 mu g.mL(-1) and suspended when extubation was indicated. Patients BIS, Ramsay scale and time to wake up were assessed. Results: The ECC group showed lower BIS values beginning at 60 minutes after surgery (no-ECC = 66 +/- 13 and ECC = 53 +/- 14, p = 0.01) until 120 minutes after infusion (no-ECC = 85 +/- 8 and ECC = 73 +/- 12, p = 0.02). Sedation level measured by the Ramsay scale was higher in the ECC group at 30 minutes after the end of the surgery (no-ECC = 5 +/- 1 and ECC = 6 +/- 0, p = 0.021), at the end of infusion (no-ECC = 5 +/- 1 and ECC = 6 +/- 1, p = 0.012) and 5 minutes after the end of infusion (no-ECC = 4 +/- 1 and ECC = 5 +/- 0.42, p = 0.039). Emergence from anesthesia time was higher in the ECC group (no-ECC = 217 +/- 81 and ECC = 319 +/- 118, p = 0.038). Conclusions: There was a higher intensity of sedation after the end of surgery and a longer wake up time in ECC group, suggesting changes in the pharmacokinetics of propofol or effects of ECC on central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca2+-calmodulin (CaM) and 14-3-3 epsilon, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1-50 mu M, most of the peptides that are investigated in this study modulate the interactions of CaM and 14-3-3 epsilon with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD-7) increases the cytosolic Ca2+ concentration in a dose-dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correlations between GABA(A) receptor (GABA(A)-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with beta-cyclodextrin (beta-CD). The mere pre-incubation (PI) at 37A degrees C accompanying the beta-CD treatment was an underlying source of perturbations increasing [H-3]-FNZ maximal binding (70%) and K (d) (38%), plus a stiffening of SMs' hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A (DPH)) in SMs submitted to a heating-cooling cycle (4-37-4A degrees C) with A (DPH,heating) < A (DPH,cooling). Compared with PI samples, the beta-CD treatment reduced B (max) by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A (TMA-DPH). PI, but not beta-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with beta-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, beta-CD is not completely eliminated from the system through centrifugation washings. It was concluded that beta-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual beta-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABA(A)-R density, relative to untreated samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-frequency repetitive transcranial magnetic stimulation (rTMS) of the unaffected hemisphere can enhance function of the paretic hand in patients with mild motor impairment. Effects of low-frequency rTMS to the contralesional motor cortex at an early stage of mild to severe hemiparesis after stroke are unknown. In this pilot, randomized, double-blind clinical trial we compared the effects of low-frequency rTMS or sham rTMS as add-on therapies to outpatient customary rehabilitation, in 30 patients within 5-45 days after ischemic stroke, and mild to severe hand paresis. The primary feasibility outcome was compliance with the interventions. The primary safety outcome was the proportion of intervention-related adverse events. Performance of the paretic hand in the Jebsen-Taylor test and pinch strength were secondary outcomes. Outcomes were assessed at baseline, after ten sessions of treatment administered over 2 weeks and at 1 month after end of treatment. Baseline clinical features were comparable across groups. For the primary feasibility outcome, compliance with treatment was 100% in the active group and 94% in the sham group. There were no serious intervention-related adverse events. There were significant improvements in performance in the Jebsen-Taylor test (mean, 12.3% 1 month after treatment) and pinch force (mean, 0.5 Newtons) in the active group, but not in the sham group. Low-frequency rTMS to the contralesional motor cortex early after stroke is feasible, safe and potentially effective to improve function of the paretic hand, in patients with mild to severe hemiparesis. These promising results will be valuable to design larger randomized clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical and experimental evidence suggest that estrogens have a major impact on cognition, presenting neurotrophic and neuroprotective actions in regions involved in such function. In opposite, some studies indicate that certain hormone therapy regimens may provoke detrimental effects over female cognitive and neurological function. Therefore, we decided to investigate how estrogen treatment would influence cognition and depression in different ages. For that matter, this study assessed the effects of chronic 17 beta-estradiol treatment over cognition and depressive-like behaviors of young (3 months old), adult (7 months old) and middle-aged (12 months old) reproductive female Wistar rats. These functions were also correlated with alterations in the serotonergic system, as well as hippocampal BDNF. 17 beta-Estradiol treatment did not influence animals' locomotor activity and exploratory behavior, but it was able to improve the performance of adult and middle-aged rats in the Morris water maze, the latter being more responsive to the treatment. Young and adult rats displayed decreased immobility time in the forced swimming test, suggesting an effect of 17 beta-estradiol also over such depressive-like behavior. This same test revealed increased swimming behavior, triggered by serotonergic pathway, in adult rats. Neurochemical evaluations indicated that 17 beta-estradiol treatment was able to increase serotonin turnover rate in the hippocampus of adult rats. Interestingly, estrogen treatment increased BDNF levels from animals of all ages. These findings support the notion that the beneficial effects of 17 beta-estradiol over spatial reference memory and depressive-like behavior are evident only when hormone therapy occurs at early ages and early stages of hormonal decline. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×10(5) cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.