10 resultados para Brain Death

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurosonological studies, specifically transcranial Doppler (TCD) and transcranial color-coded duplex (TCCD), have high level of specificity and sensitivity and they are used as complementary tests for the diagnosis of brain death (BD). A group of experts, from the Neurosonology Department of the Brazilian Academy of Neurology, created a task force to determine the criteria for the following aspects of diagnosing BD in Brazil: the reliability of TCD methodology; the reliability of TCCD methodology; neurosonology training and skills; the diagnosis of encephalic circulatory arrest; and exam documentation for BD. The results of this meeting are presented in the current paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate histopathological alterations triggered by brain death and associated trauma on different solid organs in rats. METHODS: Male Wistar rats (n=37) were anesthetized with isoflurane, intubated and mechanically ventilated. A trepanation was performed and a balloon catheter inserted into intracraninal cavity and rapidly inflated with saline to induce brain death. After induction, rats were monitored for 30, 180, and 360 min for hemodynamic parameters and exsanguinated from abdominal aorta. Heart, lung, liver, and kidney were removed and fixed in paraffin to evaluation of histological alterations (H&E). Sham-operated rats were trepanned only and used as control group. RESULTS: Brain dead rats showed a hemodynamic instability with hypertensive episode in the first minute after the induction followed by hypotension for approximately 1 h. Histological analyses showed that brain death induces vascular congestion in heart (p<0.05), and lung (p<0.05); lung alveolar edema (p=0.001), kidney tubular edema (p<0.05); and leukocyte infiltration in liver (p<0.05). CONCLUSIONS: Brain death induces hemodynamic instability associated with vascular changes in solid organs and compromises most severely the lungs. However, brain death associated trauma triggers important pathophysiological alterations in these organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. After brain death (BD) donors usually experience cardiac dysfunction, which is responsible for a considerable number of unused organs. Causes of this cardiac dysfunction are not fully understood. Some authors argue that autonomic storm with severe hemodynamic instability leads to inflammatory activation and myocardial dysfunction. Objectives. To investigate the hypothesis that thoracic epidural anesthesia blocks autonomic storm and improves graft condition by reducing the inflammatory response. Methods. Twenty-eight male Wistar rats (250-350 g) allocated to four groups received saline or bupivacaine via an epidural catheter at various times in relation to brain-death induction. Brain death was induced by a sudden increase in intracranial pressure by rapid inflation of a ballon catheter in the extradural space. Blood gases, electrolytes, and lactate analyses were performed at time zero, and 3 and 6 hours. Blood leukocytes were counted at 0 and 6 hours. After 6 hours of BD, we performed euthanasia to measure vascular adhesion molecule (VCAM)-1, intracellular adhesion molecule (ICAM)-1, interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, Bcl-2 and caspase-3 on cardiac tissue. Results. Thoracic epidural anesthesia was effective to block the autonomic storm with a significant difference in mean arterial pressure between the untreated (saline) and the bupivacaine group before BD (P < .05). However, no significant difference was observed for the expressions of VCAM-1, ICAM-1, TNF-alpha, IL-1 beta, Bcl-2, and caspase-3 (P > .05). Conclusion. Autonomic storm did not seem to be responsible for the inflammatory changes associated with BD; thoracic epidural anesthesia did not modify the expression of inflammatory mediators although it effectively blocked the autonomic storm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to evaluate if the immunohistochemical expression of alpha-3 neuronal nicotinic acetylcholine receptor subunit in sympathetic ganglia remains stable after brain death, determining the possible use of sympathetic thoracic ganglia from subjects after brain death as study group. The third left sympathetic ganglion was resected from patients divided in two groups: BD-organ donors after brain death and CON-patients submitted to sympathectomy for hyperhidrosis (control group). Immunohistochemical staining for alpha-3 neuronal nicotinic acetylcholine receptor subunit was performed; strong and weak expression areas were quantified in both groups. The BD group showed strong alpha-3 neuronal nicotinic acetylcholine receptor expression in 6.55% of the total area, whereas the CON group showed strong expression in 5.91% (p = 0.78). Weak expression was found in 6.47% of brain-dead subjects and in 7.23% of control subjects (p = 0.31). Brain death did not affect the results of the immunohistochemical analysis of sympathetic ganglia, and its use as study group is feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Experimental findings support clinical evidence that brain death impairs the viability of organs for transplantation, triggering hemodynamic, hormonal, and inflammatory responses. However, several of these events could be consequences of brain death-associated trauma. This study investigated microcirculatory alterations and systemic inflammatory markers in brain-dead rats and the influence of the associated trauma. METHOD: Brain death was induced using intracranial balloon inflation; sham-operated rats were trepanned only. After 30 or 180 min, the mesenteric microcirculation was observed using intravital microscopy. The expression of P-selectin and ICAM-1 on the endothelium was evaluated using immunohistochemistry. The serum cytokine, chemokine, and corticosterone levels were quantified using enzyme-linked immunosorbent assays. White blood cell counts were also determined. RESULTS: Brain death resulted in a decrease in the mesenteric perfusion to 30%, a 2.6-fold increase in the expression of ICAM-1 and leukocyte migration at the mesentery, a 70% reduction in the serum corticosterone level and pronounced leukopenia. Similar increases in the cytokine and chemokine levels were seen in the both the experimental and control animals. CONCLUSION: The data presented in this study suggest that brain death itself induces hypoperfusion in the mesenteric microcirculation that is associated with a pronounced reduction in the endogenous corticosterone level, thereby leading to increased local inflammation and organ dysfunction. These events are paradoxically associated with induced leukopenia after brain damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an urgent need for expanding the number of brain banks serving psychiatric research. We describe here the Psychiatric Disorders arm of the Brain Bank of the Brazilian Aging Brain Study Group (Psy-BBBABSG), which is focused in bipolar disorder (BD) and obsessive compulsive disorder (OCD). Our protocol was designed to minimize limitations faced by previous initiatives, and to enable design-based neurostereological analyses. The Psy-BBBABSG first milestone is the collection of 10 brains each of BD and OCD patients, and matched controls. The brains are sourced from a population-based autopsy service. The clinical and psychiatric assessments were done by an expert team including psychiatrists, through an informant. One hemisphere was perfused-fixed to render an optimal fixation for conducting neurostereological studies. The other hemisphere was comprehensively dissected and frozen for molecular studies. In 20 months, we collected 36 brains. A final report was completed for 14 cases: 3 BDs, 4 major depressive disorders, 1 substance use disorder, 1 mood disorder NOS, 3 obsessive compulsive spectrum symptoms, 1 OCD and 1 schizophrenia. The majority were male (64%), and the average age at death was 67.2 +/- 9.0 years. The average postmortem interval was 16 h. Three matched controls were collected. The pilot stage confirmed that the protocols are well fitted to reach our goals. Our unique autopsy source makes possible to collect a fairly number of high quality cases in a short time. Such a collection offers an additional to the international research community to advance the understanding on neuropsychiatric diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phoneutria nigriventer spider bite causes priapism, an effect attributed to the peptide toxins Tx2-5 and Tx2-6 and involving nitric oxide. Tx2-6 (MW = 5287) is known to delay the inactivation of Sodium channels in the same fashion as many other venom toxins. In the present study we evaluated the i.p. dose that induces priapism and the other symptoms in mice. Animals killed by the toxin or crude venom (0.85 mg/kg) were autopsied and a pathological study of brain, lung, kidney, liver and heart was undertaken using standard techniques. The same protocol was employed with animals injected with crude venom. Results showed that priapism is the first sign of intoxication, followed by piloerection, abundant salivation and tremors. An i.p. injection of about 0.3 mu g/kg induced only priapism with minimal side-effects. The most remarkable histological finding was a general vascular congestion in all organs studied. Penis showed no necrosis or damage. Lungs showed vascular congestion and alveolar hemorrhage. Heart showed also sub-endothelial hemorrhage. Brain showed only a mild edema and vascular congestion. Results obtained with crude venom closely resemble those of purified toxin. We conclude that Tx2-6 have profound effects on the vascular bed especially in lungs and heart, which may be the cause of death. Interestingly brain tissue was less affected and the observed edema may be attributed to respiratory impairment. To the best of our knowledge this is the first histopathological investigation on this toxin and venom suggesting a possible cause of death. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental tobacco smoke (ETS) leads to the death of 600,000 nonsmokers annually and is associated with disturbances in antioxidant enzyme capacity in the adult rodent brain. However, little is known regarding the influence of ETS on brain development. The aim of this study was to determine levels of malonaldehyde (MDA) and 3-nitrotyrosine (3-NT), as well as enzymatic antioxidant activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and superoxide dismutase (SOD), in distinct brain structures. BALB/c mice were exposed to ETS twice daily for 1 h from postnatal day 5 through postnatal day 18. Acute exposure was performed for 1 h on postnatal day 18. Mice were euthanized either immediately (0) or 3 h after the last exposure. Immediately after an acute exposure there were higher GR and GST activities and MDA levels in the hippocampus, higher GPx and SOD activities in the prefrontal cortex, and higher GST activity and MDA levels in the striatum and cerebellum. Three hours later there was an increase in SOD activity and MDA levels in the hippocampus and a decrease in the activity of all enzymes in the prefrontal cortex. Immediately after final repeated exposure there were elevated levels of GST and GR activity and decreased GPx activity in the hippocampus. Moreover, a rise was found in GPx and GST activities in the prefrontal cortex and increased GST and GPx activity in the striatum and cerebellum, respectively. After 3 h the prefrontal cortex showed elevated GR and GST activities, and the striatum displayed enhanced GST activity. Data showed that enzymatic antioxidant system in the central nervous system responds to ETS differently in different regions of the brain and that a form of adaptation occurs after several days of exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.