13 resultados para Bragg propagation constant
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie's constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.
Resumo:
Alfven eigenmodes (AEs) were studied in neutral beam injection (NBI) heated plasmas in the TJ-II stellarator using a heavy ion beam probe (HIBP) in the core, and by Langmuir (LP) and Mirnov probes (MP) at the edge. AEs were detected over the whole plasma radius by the HIBP with a spatial resolution of about 1 cm. AE-induced oscillations were detected in the plasma density n(e), electric potential phi and poloidal magnetic field B-pol with frequencies 50 kHz < f(AE) < 300 kHz. The LP, MP and HIBP data showed a high level of coherency for specific branches of AEs. Poloidal mode wave-vectors k(theta), mode numbers m (m < 8) and propagation velocities V-theta similar to 30 km s(-1) were detected for various branches of AEs, having different radial locations. When the density rose due to NBI fuelling, the AE frequency decreased as predicted by the Alfven law f(AE) similar to n(e)(-1/2). During the AE frequency decay the following new AE features were observed: (i) the poloidal wave-vector k(theta) and mode number m remained constant, (ii) the cross-phases between the oscillations in B-pol, n(e) and electric potential remained constant, having an individual value for each AE branch, (iii) V-theta decreased proportional to the AE frequency. The interaction of the AEs with the bulk (thermal) plasma resulted in clearly pronounced quasi-coherent peaks in the electrostatic turbulent particle flux spectra. Various AE branches exhibited different contributions to the particle flux: outward, inward and also zero, depending on the phase relations between the oscillations in E-pol and n(e), which are specific for each branch. A comparison with MHD mode modelling indicated that some of the more prominent frequency branches can be identified as radially extended helical AEs.
Resumo:
In this work we have constructed axially symmetric vacuum solutions of the gravitational field equations in a Randall-Sundrum brane. A non-null effective cosmological constant is considered, and asymptotically de Sitter and anti-de Sitter spacetimes are obtained. The solutions describe rotating black holes in a four-dimensional brane. Optical features of the solutions are treated, emphasizing the rotation of the polarization vector along null congruences. DOI: 10.1103/PhysRevD.86.124047
Resumo:
Objective: An experimental in vitro study was carried out to evaluate the influence of cortical bone thickness on ultrasound propagation velocity. Methods: Sixty bone plates were used, made from bovine femurs, with thickness ranging from 1 to 6 mm (10 of each). The ultrasound velocity measurements were performed using a device specially designed for this purpose, in an underwater acoustic tank and with direct contact using contact gel. The transducers were positioned in two ways: on opposite sides, with the bone between them, for the transverse measurement; and parallel to each other, on the same side of the bone plates, for the axial measurements. Results: In the axial transmission mode, the ultrasound velocity speed increased with cortical bone thickness, regardless of the distance between the transducers, up to a thickness of 5 mm, then remained constant thereafter. There were no changes in velocity when the transverse measures were made. Conclusion: Ultrasound velocity increased with cortical bone thickness in the axial transmission mode, until the thickness surpasses the wavelength, after which point it remained constant. Level of Evidence: Experimental Study.
Resumo:
The objective of this work is to evaluate the efficiency of the mini-cuttings technique in the vegetative propagation of half-sibs of angico-vermelho (Anadenanthera macrocarpa(Benth) Brenan) regarding to the productive capacity and survival of mini-stumps, rooting of the apical and intermediate mini-cuttings treated with different doses of IBA (0, 2000, 4000 and 6000 mg L-1) as well as to determine the speed of rooting in the greenhouse. The mini-stumps were obtained from seedlings of the six progenies of Anadenanthera macrocarpa half-sibs. The mini-stumps presented productivity from 1,2 to 3,7 mini-cuttings/mini-stump/collection and survival of 84% to 98% after six harvests. The apical mini-cuttings were higher than the intermediate, more prone to root, but the IBA had no significant effect on the rooting of the progenies. The results of the rooting speed showed variation among the progenies.
Resumo:
The fatigue crack behavior in metals and alloys under constant amplitude test conditions is usually described by relationships between the crack growth rate da/dN and the stress intensity factor range Delta K. In the present work, an enhanced two-parameter exponential equation of fatigue crack growth was introduced in order to describe sub-critical crack propagation behavior of Al 2524-T3 alloy, commonly used in aircraft engineering applications. It was demonstrated that besides adequately correlating the load ratio effects, the exponential model also accounts for the slight deviations from linearity shown by the experimental curves. A comparison with Elber, Kujawski and "Unified Approach" models allowed for verifying the better performance, when confronted to the other tested models, presented by the exponential model. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to perform an in vitro evaluation of the auxin: cytokinine ratio in different segments of the epicotyl and hypocotyl of Sacha inchi (Plukenetia Volubilis Linneo) seeds germinated in vitro. The segments apical (A), median (B) and basal (C) were introduced into semi-solid MS culture medium (2.0g L-1 Phytagel), supplemented with MS vitamins, sucrose (30.0g L-1) and submitted to three doses of auxin indolebutyric acid - IBA (0; 0.1; 0.5mg L-1), associated with four doses of the cytokinine benzylaminopurine - BAP (0; 0.1; 0.5; 1.0mg L-1), totaling 36 treatments. After nine weeks of in vitro cultivation, the apical segment ( A) presented shoot formation by direct organogenesis at the concentrations of 0.5 and 1.0 of BAP associated with 0.0 and 0.1 of IBA. It is feasible to use in vitro cultivation with the apical region of seeds germinated in vitro used as explants.
Resumo:
Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents.
Resumo:
A set of predictor variables is said to be intrinsically multivariate predictive (IMP) for a target variable if all properly contained subsets of the predictor set are poor predictors of the. target but the full set predicts the target with great accuracy. In a previous article, the main properties of IMP Boolean variables have been analytically described, including the introduction of the IMP score, a metric based on the coefficient of determination (CoD) as a measure of predictiveness with respect to the target variable. It was shown that the IMP score depends on four main properties: logic of connection, predictive power, covariance between predictors and marginal predictor probabilities (biases). This paper extends that work to a broader context, in an attempt to characterize properties of discrete Bayesian networks that contribute to the presence of variables (network nodes) with high IMP scores. We have found that there is a relationship between the IMP score of a node and its territory size, i.e., its position along a pathway with one source: nodes far from the source display larger IMP scores than those closer to the source, and longer pathways display larger maximum IMP scores. This appears to be a consequence of the fact that nodes with small territory have larger probability of having highly covariate predictors, which leads to smaller IMP scores. In addition, a larger number of XOR and NXOR predictive logic relationships has positive influence over the maximum IMP score found in the pathway. This work presents analytical results based on a simple structure network and an analysis involving random networks constructed by computational simulations. Finally, results from a real Bayesian network application are provided. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The affinity of the d-galactose-binding lectin from Artocarpus heterophyllus lectin, known as jacalin, with immonuglobulins (Igs) was determined by biofunctionalization of a piezoelectric transducer. This piezoelectric biofunctionalized transducer was used as a mass-sensitive analytical tool, allowing the real-time binding analysis of jacalin-human immunoglobulin A1 (IgA(1)) and jacalin-bovine IgG(1) interactions from which the apparent affinity constant was calculated. The strategy was centered in immobilizing jacalin on the gold electrode's surface of the piezoelectric crystal resonator using appropriate procedures based on self-assembling of 11-mercaptoundecanoic acid and 2-mercaptoethanol thiol's mixture, a particular immobilization strategy by which it was possible to avoid cross-interaction between the proteins over electrode's surface. The apparent affinity constants obtained between jacalin-human IgA(1) and jacalin-bovine IgG(1) differed by 1 order of magnitude [(8.0 +/- 0.9) x 10(5) vs (8.3 +/- 0.1) x 10(6) L mol(-1)]. On the other hand, the difference found between human IgA(1) and human IgA(2) interaction with jacalin, eight times higher for IgA(1), was attributed to the presence of O-linked glycans in the IgA(1) hinge region, which is absent in IgA(2). Specific interaction of jacalin with O-glycans, proved to be present in the human IgA(1) and hypothetically present in bovine IgG(1) structures, is discussed as responsible for the obtained affinity values.
Resumo:
The accuracy of ranging measurements depends critically on the knowledge of time delays undergone by signals when retransmitted by a remote transponder and due to propagation effects. A new method determines these delays for every single pulsed signal transmission. It utilizes four ground-based reference stations, synchronized in time and installed at well-known geodesic coordinates and a repeater in space, carried by a satellite, balloon, aircraft, and so forth. Signal transmitted by one of the reference bases is retransmitted by the transponder, received back by the four bases, producing four ranging measurements which are processed to determine uniquely the time delays undergone in every retransmission process. A minimization function is derived comparing repeater's positions referred to at least two groups of three reference bases, providing the signal transit time at the repeater and propagation delays, providing the correct repeater position. The method is applicable to the transponder platform positioning and navigation, time synchronization of remote clocks, and location of targets. The algorithm has been demonstrated by simulations adopting a practical example with the transponder carried by an aircraft moving over bases on the ground.
Resumo:
Abstract Background Blood leukocytes constitute two interchangeable sub-populations, the marginated and circulating pools. These two sub-compartments are found in normal conditions and are potentially affected by non-normal situations, either pathological or physiological. The dynamics between the compartments is governed by rate constants of margination (M) and return to circulation (R). Therefore, estimates of M and R may prove of great importance to a deeper understanding of many conditions. However, there has been a lack of formalism in order to approach such estimates. The few attempts to furnish an estimation of M and R neither rely on clearly stated models that precisely say which rate constant is under estimation nor recognize which factors may influence the estimation. Results The returning of the blood pools to a steady-state value after a perturbation (e.g., epinephrine injection) was modeled by a second-order differential equation. This equation has two eigenvalues, related to a fast- and to a slow-component of the dynamics. The model makes it possible to identify that these components are partitioned into three constants: R, M and SB; where SB is a time-invariant exit to tissues rate constant. Three examples of the computations are worked and a tentative estimation of R for mouse monocytes is presented. Conclusions This study establishes a firm theoretical basis for the estimation of the rate constants of the dynamics between the blood sub-compartments of white cells. It shows, for the first time, that the estimation must also take into account the exit to tissues rate constant, SB.
Resumo:
Objective. To test the hypothesis that the difference in the coefficient of thermal contraction of the veneering porcelain above (˛liquid) and below (˛solid) its Tg plays an important role in stress development during a fast cooling protocol of Y-TZP crowns. Methods. Three-dimensional finite element models of veneered Y-TZP crowns were developed. Heat transfer analyses were conducted with two cooling protocols: slow (group A) and fast (groups B–F). Calculated temperatures as a function of time were used to determine the thermal stresses. Porcelain ˛solid was kept constant while its ˛liquid was varied, creating different ˛/˛solid conditions: 0, 1, 1.5, 2 and 3 (groups B–F, respectively). Maximum ( 1) and minimum ( 3) residual principal stress distributions in the porcelain layer were compared. Results. For the slowly cooled crown, positive 1 were observed in the porcelain, orientated perpendicular to the core–veneer interface (“radial” orientation). Simultaneously, negative 3 were observed within the porcelain, mostly in a hoop orientation (“hoop–arch”). For rapidly cooled crowns, stress patterns varied depending on ˛/˛solid ratios. For groups B and C, the patterns were similar to those found in group A for 1 (“radial”) and 3 (“hoop–arch”). For groups D–F, stress distribution changed significantly, with 1 forming a “hoop-arch” pattern while 3 developed a “radial” pattern. Significance. Hoop tensile stresses generated in the veneering layer during fast cooling protocols due to porcelain high ˛/˛solid ratio will facilitate flaw propagation from the surface toward the core, which negatively affects the potential clinical longevity of a crown.