9 resultados para Boolean Networks Complexity Measures Automatic Design Robot Dynamics

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results: The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions: We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The realization that statistical physics methods can be applied to analyze written texts represented as complex networks has led to several developments in natural language processing, including automatic summarization and evaluation of machine translation. Most importantly, so far only a few metrics of complex networks have been used and therefore there is ample opportunity to enhance the statistics-based methods as new measures of network topology and dynamics are created. In this paper, we employ for the first time the metrics betweenness, vulnerability and diversity to analyze written texts in Brazilian Portuguese. Using strategies based on diversity metrics, a better performance in automatic summarization is achieved in comparison to previous work employing complex networks. With an optimized method the Rouge score (an automatic evaluation method used in summarization) was 0.5089, which is the best value ever achieved for an extractive summarizer with statistical methods based on complex networks for Brazilian Portuguese. Furthermore, the diversity metric can detect keywords with high precision, which is why we believe it is suitable to produce good summaries. It is also shown that incorporating linguistic knowledge through a syntactic parser does enhance the performance of the automatic summarizers, as expected, but the increase in the Rouge score is only minor. These results reinforce the suitability of complex network methods for improving automatic summarizers in particular, and treating text in general. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Methods from statistical physics, such as those involving complex networks, have been increasingly used in the quantitative analysis of linguistic phenomena. In this paper, we represented pieces of text with different levels of simplification in co-occurrence networks and found that topological regularity correlated negatively with textual complexity. Furthermore, in less complex texts the distance between concepts, represented as nodes, tended to decrease. The complex networks metrics were treated with multivariate pattern recognition techniques, which allowed us to distinguish between original texts and their simplified versions. For each original text, two simplified versions were generated manually with increasing number of simplification operations. As expected, distinction was easier for the strongly simplified versions, where the most relevant metrics were node strength, shortest paths and diversity. Also, the discrimination of complex texts was improved with higher hierarchical network metrics, thus pointing to the usefulness of considering wider contexts around the concepts. Though the accuracy rate in the distinction was not as high as in methods using deep linguistic knowledge, the complex network approach is still useful for a rapid screening of texts whenever assessing complexity is essential to guarantee accessibility to readers with limited reading ability. Copyright (c) EPLA, 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e. g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Social networks are static illustrations of dynamic societies, within which social interactions are constantly changing. Fundamental sources of variation include ranging behaviour and temporal demographic changes. Spatiotemporal dynamics can favour or limit opportunities for individuals to interact, and then a network may not essentially represent social processes. We examined whether a social network can embed such nonsocial effects in its topology, whereby emerging modules depict spatially or temporally segregated individuals. To this end, we applied a combination of spatial, temporal and demographic analyses to a long-term study of the association patterns of Guiana dolphins, Sotalia guianensis. We found that association patterns are organized into a modular social network. Space use was unlikely to reflect these modules, since dolphins' ranging behaviour clearly overlapped. However, a temporal demographic turnover, caused by the exit/entrance of individuals (most likely emigration/immigration), defined three modules of associations occurring at different times. Although this factor could mask real social processes, we identified the temporal scale that allowed us to account for these demographic effects. By looking within this turnover period (32 months), we assessed fission-fusion dynamics of the poorly known social organization of Guiana dolphins. We highlight that spatiotemporal dynamics can strongly influence the structure of social networks. Our findings show that hypothetical social units can emerge due to the temporal opportunities for individuals to interact. Therefore, a thorough search for a satisfactory spatiotemporal scale that removes such nonsocial noise is critical when analysing a social system. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyzed the effectiveness of linear short- and long-term variability time domain parameters, an index of sympatho-vagal balance (SDNN/RMSSD) and entropy in differentiating fetal heart rate patterns (fHRPs) on the fetal heart rate (fHR) series of 5, 3 and 2 min duration reconstructed from 46 fetal magnetocardiograms. Gestational age (GA) varied from 21 to 38 weeks. FHRPs were classified based on the fHR standard deviation. In sleep states, we observed that vagal influence increased with GA, and entropy significantly increased (decreased) with GA (SDNN/RMSSD), demonstrating that a prevalence of vagal activity with autonomous nervous system maturation may be associated with increased sleep state complexity. In active wakefulness, we observed a significant negative (positive) correlation of short-term (long-term) variability parameters with SDNN/RMSSD. ANOVA statistics demonstrated that long-term irregularity and standard deviation of normal-to-normal beat intervals (SDNN) best differentiated among fHRPs. Our results confirm that short-and long-term variability parameters are useful to differentiate between quiet and active states, and that entropy improves the characterization of sleep states. All measures differentiated fHRPs more effectively on very short HR series, as a result of the fMCG high temporal resolution and of the intrinsic timescales of the events that originate the different fHRPs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provade a very Complexity of inferences in polytree-shaped semi-qualitative probabilistic networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that interferences can be performed in time linear in the number of nodes if there is a single observed node. Because our proof is construtive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynominal-time algorithm for SQPn. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.