13 resultados para Bond Ground-states

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spin coherence generation in an ensemble of negatively charged (In,Ga)As/GaAs quantum dots was investigated by picosecond time-resolved pump-probe spectroscopy measuring ellipticity. Robust coherence of the ground-state electron spins is generated by pumping excited charged exciton (trion) states. The phase of the coherent state, as evidenced by the spin ensemble precession about an external magnetic field, varies relative to spin coherence generation resonant with the ground state. The phase variation depends on the pump photon energy. It is determined by (a) pumping dominantly either singlet or triplet excited states, leading to a phase inversion, and (b) the subsequent carrier relaxation into the ground states. From the dependence of the precession phase and the measured g factors, information about the quantum dot shell splitting and the exchange energy splitting between triplet and singlet states can be extracted in the ensemble.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polarized photoluminescence from weakly coupled random multiple well quasi-three-dimensional electron system is studied in the regime of the integer quantum Hall effect. Two quantum Hall ferromagnetic ground states assigned to the uncorrelated miniband quantum Hall state and to the spontaneous interwell phase coherent dimer quantum Hall state are observed. Photoluminescence associated with these states exhibits features caused by finite-size skyrmions: dramatic reduction of the electron spin polarization when the magnetic field is increased past the filling factor nu = 1. The effective skyrmion size is larger than in two-dimensional electron systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Renyi and von Neumann entropies quantifying the amount of entanglement in ground states of critical spin chains are known to satisfy a universal law which is given by the conformal field theory (CFT) describing their scaling regime. This law can be generalized to excitations described by primary fields in CFT, as was done by Alcaraz et al in 2011 (see reference [1], of which this work is a completion). An alternative derivation is presented, together with numerical verifications of our results in different models belonging to the c = 1, 1/2 universality classes. Oscillations of the Renyi entropy in excited states are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We estimate the masses of the 1(--) heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in alpha(s) but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50-110) MeV and the ones of about (250-300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavor independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y-c(4260, 4360, 4660) and Y-b(10890) 1(--) experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure 1(--) four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0(++) four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1(--) states, while the splittings between the 0(++) lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1(--) and 0(++) four-quark states which are tiny and which exhibit a 1/M-Q behavior. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHCb and some other hadron factories. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we introduce the class of quantum mechanics superpotentials W(x) = g epsilon(x)x(2n) and study in detail the cases n = 0 and 1. The n = 0 superpotential is shown to lead to the known problem of two supersymmetrically related Dirac delta potentials (well and barrier). The n = 1 case results in the potentials V+/-(x) = g(2)x(4) +/- 2g|x|. For V-, we present the exact ground-state solution and study the excited states by a variational technique. Starting from the ground state of V- and using logarithmic perturbation theory, we study the ground states of V+ and also of V(x) = g(2)x(4) and compare the result obtained in this new way with other results for this last potential in the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a detailed theoretical study of the stability of the gas-phase diatomic dications SnF2+, SnCl2+, and SnO2+ using ab initio computer calculations. The ground states of SnF2+, SnCl2+, and SnO2+ are thermodynamically stable, respectively, with dissociation energies of 0.45, 0.30, and 0.42 eV. Whereas SnF2+ dissociates into Sn2+ + F, the long range behaviour of the potential energy curves of SnCl2+ and SnO2+ is repulsive and wide barrier heights due to avoided crossing act as a kind of effective dissociation energy. Their equilibrium internuclear distances are 4.855, 5.201, and 4.852 a(0), respectively. The double ionisation energies (T-e) to form SnF2+, SnCl2+, and SnO2+ from their respective neutral parents are 25.87, 23.71, and 25.97 eV. We combine our theoretical work with the experimental results of a search for these doubly positively charged diatomic molecules in the gas phase. SnO2+ and SnF2+ have been observed for prolonged oxygen (O-16(-)) ion beam sputtering of a tin metal foil and of tin (II) fluoride (SnF2) powder, respectively, for ion flight times of about 10(-5) s through a magnetic-sector mass spectrometer. In addition, SnCl2+ has been detected for O-16(-) ion surface bombardment of stannous (tin (II)) chloride (SnCl2) powder. To our knowledge, SnF2+ is a novel gas-phase molecule, whereas SnCl2+ had been detected previously by electron-impact ionization mass spectrometry, and SnO2+ had been observed before by spark source mass spectrometry as well as by atom probe mass spectrometry. We are not aware of any previous theoretical studies of these molecular systems. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758475]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the Shannon mutual information of subsystems of critical quantum chains in their ground states. Our results indicate a universal leading behavior for large subsystem sizes. Moreover, as happens with the entanglement entropy, its finite-size behavior yields the conformal anomaly c of the underlying conformal field theory governing the long-distance physics of the quantum chain. We study analytically a chain of coupled harmonic oscillators and numerically the Q-state Potts models (Q = 2, 3, and 4), the XXZ quantum chain, and the spin-1 Fateev-Zamolodchikov model. The Shannon mutual information is a quantity easily computed, and our results indicate that for relatively small lattice sizes, its finite-size behavior already detects the universality class of quantum critical behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva) and eroded dentin (pH cycling model - 3x / cola drink for 7 days). Specimens were then reassigned according to restorative material: glass ionomer cement (Ketac (TM) Molar Easy Mix), resin-modified glass ionomer cement (Vitremer (TM)) or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250). Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37 degrees C. The failure mode was evaluated using a stereomicroscope (400x). Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (alpha = 0.05). Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001). For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of formamide and the two transition states of its amide group rotation with one, two, or three water molecules was studied in vacuum. Great differences between the electronic structure of formamide in its most stable form and the electronic structure of the transition states were noticed. Intermolecular interactions were intense, especially in the cases where the solvent interacted with the amide and the carbonyl groups simultaneously. In the transition states, the interaction between the lone pair of nitrogen and the water molecule becomes important. With the aid of the natural bond orbitals, natural resonance theory, and electron localization function (ELF) analyses an increase in the resonance of planar formamide with the addition of successive water molecules was observed. Such observation suggests that the hydrogen bonds in the formamidewater complexes may have some covalent character. These results are also supported by the quantitative ELF analyses. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on charmonium measurements [J/psi (1S), psi' (2S), and chi(c) (1P)] in p + p collisions at root s = 200 GeV. We find that the fraction of J/psi coming from the feed-down decay of psi' and chi(c) in the midrapidity region (vertical bar y vertical bar < 0: 35) is 9.6 +/- 2.4% and 32 +/- 9%, respectively. We also present the p(T) and rapidity dependencies of the J/psi yield measured via dielectron decay at midrapidity (vertical bar y vertical bar < 0.35) and via dimuon decay at forward rapidity (1.2 < vertical bar y vertical bar < 2.2). The statistical precision greatly exceeds that reported in our previous publication [Phys. Rev. Lett. 98, 232002 (2007)]. The new results are compared with other experiments and discussed in the context of current charmonium production models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field//configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T-2 electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T-1 -> T-3 and T-1 -> T-5 transitions, supporting that the intermediate triplet state (T-2) decays by internal conversion to T-1. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738757]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All doublet and quartet electronic states correlating with the first dissociation channel of SeCl and some Rydberg states are investigated theoretically at the CASSCF/MRCI level of theory using extended basis sets, including the contribution of spin-orbit effects. The similarity of the potential energy curves with those of SeF suggests that spectroscopic constants for the ground (X (2)Pi) and the first excited quartet (a(4)Sigma) of SeCl could also be determined via an emission resulting from the reaction of selenium with atomic chlorine. The coupling constant of the ground state at R-e is estimated as -1610 cm (1). The potential energy curves calculated and the derived spectroscopic constants do not support the interpretation and assignment of the scarce transitions recorded experimentally as due to (2)Pi-(2)Pi emissions. That the few observed lines might arise from transitions from the state b(4)Sigma(-)(1/2) to a very high vibrational level of the state a(4)Sigma(-)(1/2) is an open possibility, however, the number of vibrational states and the calculated Delta G(1/2) differ significantly from the reported ones. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarized magnetophotoluminescence is employed to study the energies and occupancies of four lowest Landau levels in a couple quantum Hall GaAs/AlGaAs double quantum well. As a result, a magnetic field-induced redistribution of charge over the Landau levels manifesting to the continuous formation of the charge density wave and direct evidence for the symmetric-antisymmetric gap shrinkage at v = 3 are found. The observed interlayer charge exchange causes depolarization of the ferromagnetic ground state.