9 resultados para Blood Ph
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective The aim of this study was to compare the efficacy of treating osmotic diarrhea and dehydration in calves with hypertonic saline solution (HSS) IV, isotonic electrolyte solution (IES) PO, and a combination of these 2 solutions (HSS + IES). Experimental Design Eighteen male calves 830 days of age were used to evaluate the efficacy of 3 methods of fluid therapy after induction of osmotic diarrhea and dehydration. The diarrhea and dehydration were induced by administration of saccharose, spironolactone, and hydrochlorothiazide for 48 hours. The animals were randomly divided into 3 experimental groups: Group 1: 7.2% hypertonic saline solution-HSS (5 mL/kg IV); Group 2: oral isotonic electrolyte solution IES (60 mL/kg PO); or Group 3: HSS+IES. Clinical signs and laboratory finding observed 48 hours post-induction (Time 0) included diarrhea, dehydration, lethargy, and metabolic acidosis. Results Calves treated with HSS + IES experienced decreases in hematocrit, total protein concentration, albumin concentration, urea nitrogen concentration, and plasma volume as well as increases in blood pH, blood bicarbonate concentration, and central venous pressure between 1 and 3 hours post-treatment. These findings also were observed in animals treated with IES, however, at a slower rate than in the HSS + IES-treated animals. Animals treated with HSS continued to display signs of dehydration, lethargy, and metabolic acidosis 24 hours post-treatment. Conclusion Treatment with a combination of HSS and IES produced rapid and sustainable correction of hypovolemia and metabolic acidosis in calves with noninfections diarrhea and dehydration.
Resumo:
Contents Among the modifications that occur during the neonatal period, pulmonary development is the most critical. The neonate's lungs must be able to perform adequate gas exchange, which was previously accomplished by the placenta. Neonatal respiratory distress syndrome is defined as insufficient surfactant production or pulmonary structural immaturity and is specifically relevant to preterm newborns. Prenatal maternal betamethasone treatment of bitches at 55days of gestation leads to structural changes in the neonatal lung parenchyma and consequently an improvement in the preterm neonatal respiratory condition, but not to an increase in pulmonary surfactant production. Parturition represents an important challenge to neonatal adaptation, as the uterine and abdominal contractions during labour provoke intermittent hypoxia. Immediately after birth, puppies present venous mixed acidosis (low blood pH and high dioxide carbon saturation) and low but satisfactory Apgar scores. Thus, the combination of physiological hypoxia during birth and the initial effort of filling the pulmonary alveoli with oxygen results in anaerobiosis. As a neonatal adaptation follow-up, the Apgar analysis indicates a tachypnoea response after 1h of life, which leads to a shift in the blood acidbase status to metabolic acidosis. One hour is sufficient for canine neonates to achieve an ideal Apgar score; however, a haemogasometric imbalance persists. Dystocia promotes a long-lasting bradycardia effect, slows down Apgar score progression and aggravates metabolic acidosis and stress. The latest data reinforce the need to accurately intervene during canine parturition and offer adequate medical treatment to puppies that underwent a pathological labour.
Resumo:
Two experiments were carried out with twenty-four male weaned Holstein calves to verify the influence of different dietary cation-anion concentrate and roughage proportions on calves metabolism. In the first experiment, calves were fed rations with -100, +200 and +400 mEq cation-anion balance/kg of dry matter, containing 60% of roughage and 40% of concentrate. In the second experiment, calves (117.6±20.8 kg average weight) received rations with similar dietary cation-anion balance but in diets of 40% roughage and 60% concentrate. As the dietary cation-anion balance became more positive, there was a quadratic response of blood pH in both diets with 60 and 40% roughage. A linear increase following increased dietary cation-anion balance was observed on bicarbonate concentration, carbon dioxide tension, carbon dioxide partial pressure and urine pH on both experiments, while anion gap decreased linearly. Blood urea nitrogen and base excess increased quadratically according to increased dietary cation-anion balance on 60% roughage, whereas those same parameters showed a linear increase on 40% roughage. Growing ruminant metabolism both in cationic and anionic diets was modified when the roughage:concentrate ratio was altered.
Resumo:
Although several studies on ammonia poisoning have been carried out, there is a lack of information on acid-base balance status in ammonia-poisoned cattle. Twelve crossbred steers received intraruminally 0.5 g of urea per kg of body weight in order to induce a clinical picture of ammonia poisoning. Blood samples were collected throughout the trials in order to determine the blood ammonia, lactate, and perform blood gas analysis. All cattle presented a classical clinical picture of ammonia poisoning, with a blood ammonia concentration rising progressively from the beginning until reaching higher values at 180 min (27 ± 3 to 1719 ± 101 μmol L-1), with a similar pattern occurring with blood L-lactate levels (1.7 ± 0.3 to 26.0 ± 1.7 mmol L-1). The higher the blood ammonia concentration the higher the blood L-lactate levels (r = 0.86). All animals developed metabolic acidosis, as blood pH lowered to 7.24 0.03. The steers tried to compensate the metabolic acidosis mainly through the use of blood buffers and respiratory adjustments by lowering the pCO2 levels in the blood to 32.8 ± 2.0 mm Hg.
Resumo:
Aquafeed production faces global issues related to availability of feed ingredients. Feed manufacturers require greater flexibility in order to develop nutritional and cost-effective formulations that take into account nutrient content and availability of ingredients. The search for appropriate ingredients requires detailed screening of their potential nutritional value and variability at the industrial level. In vitro digestion of feedstuffs by enzymes extracted from the target species has been correlated with apparent protein digestibility (APD) in fish and shrimp species. The present study verified the relationship between APD and in vitro degree of protein hydrolysis (DH) with Litopenaeus vannamei hepatopancreas enzymes in several different ingredients (n = 26): blood meals, casein, corn gluten meal, crab meal, distiller`s dried grains with solubles, feather meal, fish meals, gelatin, krill meals, poultry by-product meal, soybean meals, squid meals and wheat gluten. The relationship between APD and DH was further verified in diets formulated with these ingredients at 30% inclusion into a reference diet. APD was determined in vivo (30.1 +/- 0.5 degrees C, 32.2 +/- 0.4%.) with juvenile L vannamei (9 to 12 g) after placement of test ingredients into a reference diet (35 g kg(-1) CP: 8.03 g kg(-1) lipid; 2.01 kcal g(-1)) with chromic oxide as the inert marker. In vitro DH was assessed in ingredients and diets with standardized hepatopancreas enzymes extracted from pond-reared shrimp. The DH of ingredients was determined under different assay conditions to check for the most suitable in vitro protocol for APD prediction: different batches of enzyme extracts (HPf5 or HPf6), temperatures (25 or 30 degrees C) and enzyme activity (azocasein): crude protein ratios (4 U: 80 mg CP or 4 U: 40 mg CP). DH was not affected by ingredient proximate composition. APD was significantly correlated to DH in regressions considering either ingredients or diets. The relationships between APD and DH of the ingredients could be suitably adjusted to a Rational Function (y = (a + bx)/(1 + cx + dx2), n = 26. Best in vitro APD predictions were obtained at 25 degrees C, 4 U: 80 mg CP both for ingredients (R(2) = 0.86: P = 0.001) and test diets (R(2) = 0.96; P = 0.007). The regression model including all 26 ingredients generated higher prediction residuals (i.e., predicted APD - determined APD) for corn gluten meal, feather meal. poultry by-product meal and krill flour. The remaining test ingredients presented mean prediction residuals of 3.5 points. A model including only ingredients with APD>80% showed higher prediction precision (R(2) = 0.98: P = 0.000004; n = 20) with average residual of 1.8 points. Predictive models including only ingredients from the same origin (e.g., marine-based, R(2) = 0.98; P = 0.033) also displayed low residuals. Since in vitro techniques have been usually validated through regressions against in vivo APD, the DH predictive capacity may depend on the consistency of the in vivo methodology. Regressions between APD and DH suggested a close relationship between peptide bond breakage by hepatopancreas digestive proteases and the apparent nitrogen assimilation in shrimp, and this may be a useful tool to provide rapid nutritional information. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To determine the correlation between ph at birth and venous Doppler parameters in pregnancies with placental dysfunction. Methods: This was a prospective cohort study of 58 pregnancies with the diagnosis of placental dysfunction between 26 and 34 weeks of gestation. Inclusion criteria were singleton pregnancies, abnormal umbilical artery (UA) Doppler, fetal growth restriction diagnosed by estimated fetal weight <10th centile for gestational age, intact membranes, and absence of fetal congenital abnormalities. The Doppler measurements were the following: UA pulsatility index (PI), ductus venosus (DV) pulsatility index for veins (PIV), intra-abdominal umbilical vein (UV) time-averaged maximum velocity (TAMxV) and blood flow and left portal vein (LPV) time-averaged maximum velocity (TAMxV) and blood flow. All Doppler parameters were transformed into z-scores (SD values from the mean) according to normative references. Results: The UA pH at birth showed a negative significant correlation with the DV-PIV (p = 0.004) and the DV-PIV z-score (p = 0.004), while LPV TAMxV (p = 0.004), LPV TAMxV z-score (p = 0.002), LPV blood flow (p = 0.01), LPV blood flow normalized (p = 0.04) and UV blood flow (p = 0.04) positively correlated with pH at birth. Multiple regression analysis was performed and the DV-PIV z-score was the variable that independently correlated with pH at birth (p = 0.002). Conclusions: the present results suggest that changes in fetal venous blood flow, mainly DV and LPV are useful in the management of cases with early onset placental insufficiency and that venous Doppler parameters correlate with pH at birth.
Resumo:
The in vitro stability of cocaine in horse blood, sheep vitreous humour (VH) and homogenised deer muscle is described. The stability of cocaine in horse blood was of interest because many toxicology laboratories utilise horse blood for the preparation of calibration and check standards and the latter are typically stored during routine use. The storage stability of cocaine in human VH and muscle has not been previously reported. In the absence of blank human VH and muscle, cocaine stability under varying conditions was demonstrated in animal tissues. Blood and VH were stored with and without addition of NaF at room temperature (RT), 4 degrees C and -18 degrees C for 84 days. Muscle homogenates were prepared in water, water/2% NaF, and phosphate buffer (pH 6.0)/2% NaF, and stored for 31 days at RT, 4 degrees C and -18 degrees C. Cocaine stability in human muscle obtained from cocaine positive forensic cases was assessed following storage at -18 degrees C for 13 months. Cocaine and benzoylecgonine (BZE) were extracted using SPE and quantified by GC-MS/MS. Cocaine was stable for 7 days in refrigerated (4 degrees C) horse blood fortified with 1 and 2% NaF. In the absence of NaF, cocaine was not detectable by day 7 in blood stored at RT and 4 degrees C and had declined by 81% following storage at -18 degrees C. At 4 degrees C the rate of cocaine degradation in blood preserved with 2% NaF was significantly slower than with 1% NaF. The stability of cocaine in horse blood appeared to be less than that reported for human blood, probably attributable to the presence of carboxylesterase in horse plasma. Cocaine stored in VH at -18 degrees C was essentially stable for the study period whereas at 4 degrees C concentrations decreased by >50% in preserved and unpreserved VH stored for longer than 14 days. Fluoride did not significantly affect cocaine stability in VH. The stability of cocaine in muscle tissue homogenates significantly exceeded that in blood and VH at every temperature. In preserved and unpreserved samples stored at 4 degrees C and below, cocaine loss did not exceed 2%. The increased stability of cocaine in muscle was attributed to the low initial pH of post-mortem muscle. In tissue from one human case stored for 13 months at -18 degrees C the muscle cocaine concentration declined by only 15% (range: 5-22%). These findings promote the use of human muscle as a toxicological specimen in which cocaine may be detected for longer compared with blood or VH. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Here, we present a method for measuring barbiturates (butalbital, secobarbital, pentobarbital, and phenobarbital) in whole blood samples. To accomplish these measurements, analytes were extracted by means of hollow-fiber liquid-phase microextraction in the three-phase mode. Hollow-fiber pores were filled with decanol, and a solution of sodium hydroxide (pH 13) was introduced into the lumen of the fiber (acceptor phase). The fiber was submersed in the acidified blood sample, and the system was subjected to an ultrasonic bath. After a 5 min extraction, the acceptor phase was withdrawn from the fiber and dried under a nitrogen stream. The residue was reconstituted with ethyl acetate and trimethylanilinium hydroxide. An aliquot of 1.0 mu L of this solution was injected into the gas chromatograph/mass spectrometer, with the derivatization reaction occurring in the hot injector port (flash methylation). The method proved to be simple and rapid, and only a small amount of organic solvent (decanol) was needed for extraction. The detection limit was 0.5 mu g/mL for all the analyzed barbiturates. The calibration curves were linear over the specified range (1.0 to 10.0 mu g/mL). This method was successfully applied to postmortem samples (heart blood and femoral blood) collected from three deceased persons previously exposed to barbiturates.
Resumo:
The new pathway nitrate-nitrite-nitric oxide (NO) has emerged as a physiological alternative to the classical enzymatic pathway for NO formation from L-arginine. Nitrate is converted to nitrite by commensal bacteria in the oral cavity and the nitrite formed is then swallowed and reduced to NO under the acidic conditions of the stomach. In this study, we tested the hypothesis that increases in gastric pH caused by omeprazole could decrease the hypotensive effect of oral sodium nitrite. We assessed the effects of omeprazole treatment on the acute hypotensive effects produced by sodium nitrite in normotensive and L-NAME-hypertensive free-moving rats. In addition, we assessed the changes in gastric pH and plasma levels of nitrite, NOx (nitrate+ nitrite), and S-nitrosothiols caused by treatments. We found that the increases in gastric pH induced by omeprazole significantly reduced the hypotensive effects of sodium nitrite in both normotensive and L-NAME-hypertensive rats. This effect of omeprazole was associated with no significant differences in plasma nitrite, NOx, or S-nitrosothiol levels. Our results suggest that part of the hypotensive effects of oral sodium nitrite may be due to its conversion to NO in the acidified environment of the stomach. The increase in gastric pH induced by treatment with omeprazole blunts part of the beneficial cardiovascular effects of dietary nitrate and nitrite. (c) 2012 Elsevier Inc. All rights reserved.