20 resultados para Blackberry juice
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Antioxidants are compounds responsible for free radical scavenging in the body. They protect the organism from oxidative modification of cells and tissues. These modifications have been associated with degenerative diseases, atherosclerosis and carcinogenesis. Punica granatum displays high antioxidant potential due to the presence of phenolic compounds, which are capable of disease prevention. The present study showed the highest antioxidant activity in pomegranate peel than in seeds and pulp. Based on these results, pomegranate peel was used to produce dried extract that was added to commercial tomato juice and orange juice with strawberries. Analysis to determine the content of phenolic compounds and antioxidant activity was performed on pomegranate pulp, seeds and peel and in juices enriched with dried extract of pomegranate peel. The dried extract was responsible for a significant increase in antioxidant activity of the juices, proportional to the concentrations added. However, although both flavors of enriched juices displayed high antioxidant levels, the samples with higher dried extract concentrations received the lowest scores from sensory analysis participants due to the characteristic astringent flavor of pomegranate peels. Therefore, to obtain greater acceptance in the consumer market, we concluded that the maximum addition of dried pomegranate peel extract is 0.5% in tomato juice and orange juice with strawberries.
Resumo:
The aim of this study was to evaluate the erosive potential of orange juice modified with food-approved additives: 0.4 g/l of calcium (Ca) from calcium lactate pentahydrate, 0.2 g/l of linear sodium polyphosphate (LPP) or their combination (Ca+LPP) were added to a commercially available orange juice (negative control, C-). A commercially available calcium-modified orange juice (1.6 g/l of calcium) was the positive control (C+). These juices were tested using a short-term erosion in situ model, consisting of a five-phase, single-blind crossover clinical trial involving 10 subjects. In each phase, subjects inserted custom-made palatal appliances containing 8 bovine enamel specimens in the mouth and performed erosive challenges for a total of 0 (control), 10, 20, and 30 min. Two specimens were randomly removed from the appliances after each challenge period. Enamel surface microhardness was measured before and after the clinical phase and the percentage of surface microhardness change (%SMC) was determined. Before the procedures, in each phase, the subjects performed a taste test, where the juice assigned to that phase was blindly compared to C-. Overall, C+ showed the lowest %SMC, being the least erosive solution (p < 0.05), followed by Ca+LPP and Ca, which did not differ from each other (p > 0.05). LPP and C- were the most erosive solutions (p <0.05). Taste differences were higher for C+ (5/10 subjects) and Ca (4/10 subjects), but detectable in all groups, including C- (2/10 subjects). Calcium reduced the erosive potential of the orange juice, while no protection was observed for LPP. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Alicyclobacillus acidoterrestris is a spoilage-causing bacterium in fruit juices. The inactivation of this bacterium by commercial saponin and saponin purified extract from Sapindus saponaria fruits combined with heat-treatment is described. We investigated heat treatment (87, 90, 95, and 99 degrees C) with incubation time ranging from 0 to 50 min, in both concentrated and reconstituted juice. juices were inoculated with 1.0 x 10(4) CFU/mL of A. acidoterrestris spores for the evaluation of the best temperature for inactivation. For the temperatures of 87, 90, and 95 degrees C counts of cell viability decreased rapidly within the first 10 to 20 min of incubation in both concentrated and reconstituted juices; inactivation at 99 degrees C ensued within 1 and 2 min. Combination of commercial saponin (100 mg/L) with a very short incubation time (1 min) at 99 degrees C showed a reduction of 234 log cycle for concentrated juice A. acidoterrestris spores (1.0 x 10(4) CFU/mL) in the first 24 h of incubation after treatments. The most efficient treatment was reached with 300, 400 or 500 mg/L of purified extract of saponins from S. saponaria after 5 days of incubation in concentrated juice, and after 5 days with 300 and 400 mg/L or 72 h with 500 mg/L in reconstituted juice. Commercial saponin and purified extracts from S. saponaria had similar inactivation power on A. acidoterrestris spores, without significant differences (P>0.05). Therefore, purified extract of saponins can be an alternative for the control of A acidoterrestris in fruit juices. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Moderate wine intake (i.e., 1-2 glasses of wine a day) is associated with a reduced risk of morbidity and mortality from cardiovascular disease. The aim of this study was to evaluate the anti-atherosclerotic effects of a nonalcoholic ethyl acetate fraction (EAF) from a South Brazilian red wine obtained from Vitis labrusca grapes. Experiments were carried out on low-density lipoprotein (LDL) receptor knockout (LDLr-/-) mice, which were subjected to a hypercholesterolemic diet and treated with doses of EAF (3, 10, and 30 mg/kg) for 12 weeks. At the end of the treatment, the level of plasma lipids, the vascular reactivity, and the atherosclerotic lesions were evaluated. Our results demonstrated that the treatment with EAF at 3 mg/kg significantly decreased total cholesterol, triglycerides, and LDL plus very low-density lipoprotein levels compared with control hypercholesterolemic mice. The treatment of mice with EAF at 3 mg/kg also preserved the vasodilatation induced by acetylcholine on isolated thoracic aorta from hypercholesterolemic LDLr-/- mice. This result is in agreement with the degree of lipid deposit on arteries. Taken together, the results show for the first time that the lowest concentration of an EAF obtained from a red wine produced in southern Brazil significantly reduced the progression of atherosclerosis in mice.
Resumo:
The purpose of the present study was to evaluate the erosive potential of different types (concentrated and powdered) and commercial brands of industrialised grape juices. The pH of all five fruit drinks was measured at two time points: immediately after preparation and 24 hours later. Sixty specimens of bovine enamel were randomly allocated and immersed in different types of grape juice (n = 10) for 10 minutes four times a day for fifteen days. The enamel alteration was analysed using surface Knoop microhardness (KHN) and surface roughness (R-a) tests at baseline and on the 5th, 10th and 15th days of the experiment. Two way ANOVA, Tukey's post hoc and Pearson's correlation tests were used for statistical analysis (alpha = 5%). The grape juices presented pH values ranging from 2.9 to 3.5. All of the tested juices promoted significant enamel mineral loss (p < 0.05) on the first evaluation (5th day of immersion) and produced a significant increase in the mean roughness from the 10th day on when compared to the control group (p < 0.05). By the 15th day, all of the beverages had produced surface roughnesses that were significantly higher than that of the control group. The results suggest that all grape juices, regardless of their commercial presentation, present erosive potential.
Resumo:
This study reports on the influence of heat and hydrogen peroxide combination on the inactivation kinetics of two heat resistant molds: Neosartorya fischeri and Paecilomyces variotii. Spores of different ages (1 and 4 months) of these molds were prepared and D-values (the time required at certain temperature/hydrogen peroxide combination to inactivate 90% of the mold ascospores) were determined using thermal death tubes. D-values found for P. variotii ranged from 1.2 to 25.1 s after exposure to different combinations of heat (40 or 60 degrees C) and hydrogen peroxide (35 or 40% w/w) while for N. fischeri they varied from 2.7 to 14.3 s after exposure to the same hydrogen peroxide concentrations and higher temperatures (60 or 70 degrees C). The influence of temperature and hydrogen peroxide concentration on the d-values varied with the genus of mold and their ages. A synergistic effect of heat and hydrogen peroxide in reducing D-values of Paecilomyces variotti and N. fischeri has been observed. In addition to strict control of temperature, time and hydrogen concentration, hygienic storage and handling of laminated paperboard material must be considered to reduce the probability of package's contamination. All these measures together will ensure package's sterility that is imperative for the effectiveness of aseptic processing and consequently to ensure the microbiological stability of processed foods during shelf-life. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Iron has been suggested to reduce the erosive potential of cola drinks in vitro. Objective: The aim of this study was to evaluate in situ the effect of ferrous sulfate supplementation on the inhibition of the erosion caused by a cola drink. Material and Methods: Ten adult volunteers participated in a crossover protocol conducted in two phases of 5 days, separated by a washout period of 7 days. In each phase, they wore palatal devices containing two human enamel and two human dentin blocks. The volunteers immersed the devices for 5 min in 150 mL of cola drink (Coca-Cola (TM), pH 2.6), containing ferrous sulfate (10 mmol/L) or not (control), 4 times per day. The effect of ferrous sulfate on the inhibition of erosion was evaluated by profilometry (wear). Data were analyzed by paired t tests (p<0.05). Results: The mean wear (+/- se) was significantly reduced in the presence of ferrous sulfate, both for enamel (control: 5.8 +/- 1.0 mu m; ferrous sulfate: 2.8 +/- 0.6 mu m) and dentin (control: 4.8 +/- 0.8 mu m; ferrous sulfate: 1.7 +/- 0.7 mu m). Conclusions: The supplementation of cola drinks with ferrous sulfate can be a good alternative for the reduction of their erosive potential. Additional studies should be done to test if lower ferrous sulfate concentrations can also have a protective effect as well as the combination of ferrous sulfate with other ions.
Resumo:
Concentrations of 39 organic compounds were determined in three fractions (head, heart and tail) obtained from the pot still distillation of fermented sugarcane juice. The results were evaluated using analysis of variance (ANOVA), Tukey's test, principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA). According to PCA and HCA, the experimental data lead to the formation of three clusters. The head fractions give rise to a more defined group. The heart and tail fractions showed some overlap consistent with its acid composition. The predictive ability of calibration and validation of the model generated by LDA for the three fractions classification were 90.5 and 100%, respectively. This model recognized as the heart twelve of the thirteen commercial cachacas (92.3%) with good sensory characteristics, thus showing potential for guiding the process of cuts.
Resumo:
Objective: The aim of this study was to evaluate, through a crossover 2 x 2 in situ trial, the effect of a desensitizing dentifrice associated with CO2 laser irradiation to control the permeability of eroded root dentin. Background data: Facing the increased prevalence of erosive lesion and the need for preventive means to control painful symptoms related to them. Methods: Eighty slabs of bovine root dentin were subjected to initial erosive challenge (citric acid 0.3%, 2 h), followed by a remineralizing period in artificial saliva (24 h). Specimens were then divided according to dentin treatment: desensitizing dentifrice, desensitizing dentifrice + CO2 laser, fluoride anticavity dentifrice. and fluoride anticavity dentifrice + CO2 laser. After a 2-day lead-in period, 10 volunteers wore an intraoral palatal appliance containing four root dentin slabs, in two phases of 5 days each. During the intraoral phase, one side of the appliance was immersed in 0.3% citric acid, and the opposite side was immersed in deionized water, four times a day. One hour after the immersions, all specimens were brushed with dentifrice slurry provided by the researcher. After a 7-day washout period, volunteers were crossed over on the different dentifrice group. Each phase having been completed, the specimens were evaluated for permeability through an optical microscope. Results: Data were analyzed using ANOVA and no significant difference (p = 0.272) was found between the surface treatments performed on bovine root dentin. Conclusions: It can be concluded that fluoride anticavity or desensitizing dentifrice, regardless of the association with the CO2 laser irradiation, was able to control the permeability of eroded root dentin.
Resumo:
The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to select adequate early-maturing sweet orange cultivars for the fresh fruit market and for industrial processing using performance indexes. Performance indexes for citrus were established from data collected in an experiment carried out in the southwest region of the state of Sao Paulo, involving 12 early-maturing sweet orange cultivars. New results were obtained by identifying cultivars with superior characteristics. In a comparison with 'Hamlin' sweet orange, a standard early-maturing cultivar, 'Valencia 2' and 'Salustiana' were considered better materials for the fresh fruit market, whereas 'Westin' sweet orange was identified as a superior cultivar for orange juice processing.
Resumo:
The occurrence of ochratoxin A (OTA) in wine from 2002 to 2008 harvest, traded in Rio de Janeiro State, was evaluated by analysing 43 national and 37 imported wines from Argentina (32) and Chile (5), adding up to 80 samples in total. OTA determination was performed using immunoaffinity columns and high-performance liquid chromatography. In 80 wine samples analysed, 25 (31.3%) were positive, presenting levels greater than 0.020 ng OTA mL(-1). It was not detected in imported wines. Within national wines, 58.1% of the samples were contaminated, with levels ranging from 0.020 to 0.050 ng mL(-1). The toxin was detected in 18 (69.2%) of 26 samples analysed of red table wine. Wines from 2008 harvest presented 84.6% of samples contaminated in 13 samples analysed. Despite the levels found in this study, they are below Brazilian tolerance limits. Nevertheless, the presence of OTA as found contributes to the human exposure to this toxin.
Resumo:
This study aimed to investigate the effects of pectinase enzyme treatment of acai pulp on cross-flow microfiltration (CFMF) performance and on phytochemical and functional characteristics of their compounds. Analyses of fouling mechanisms were carried out through resistance in series and blocking in law models. The enzymatic treatment was conducted using Ultrazym(R) AFPL (Novozymes A/S) at 500 mg kg(-1) of acai pulp for 30 min at 35 degrees C. Before microfiltrations, untreated and enzyme-treated acai pulps were previously diluted in distilled water (1:3; w/v). CFMFs were conducted using commercial alpha-alumina (alpha-Al2O3) ceramic membranes (Andritz AG, Austria) of 0.2 mu m and 0.8 mu m pore sizes, and 0.0047 m(2) of filtration area. The microfiltration unit was operated in batch mode for 120 min at 25 degrees C and the fluid-dynamic conditions were transmembrane pressure of Delta P = 100 kPa and cross-flow velocity of 3 m s(-1) in turbulent flow. The highest values of permeate flux and accumulated permeate volume were obtained using enzyme-treated pulp and 0.2 mu m pore size membranes with steady flux values exceeding 100 L h(-1) m(-2). For the 0.8 mu m pore size membrane, the estimated total resistance after the microfiltration of enzyme-treated acai pulp was 21% lower than the untreated pulp, and for the 0.2 mu m pore size membrane, it was 18%. Cake filtration was the dominant mechanism in the early stages of most of the CFMF processes. After approximately 20 min, however, intermediate pore blocking and complete pore blocking contributed to the overall fouling mechanisms. The reduction of the antioxidant capacity of the permeates obtained after microfiltration of the enzyme-treated pulp was higher (p < 0.01) than that obtained using untreated pulp. For total polyphenols, on the contrary, the permeates obtained after microfiltration of the enzyme-treated pulp showed a lower mean reduction (p < 0.01) than those from the untreated pulp. The results show that the enzymatic treatment had a positive effect on the CFMF process of acai pulp. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Lactobacillus sakei 1 is a food isolate that produces a heat-stable antimicrobial peptide (sakacin 1, a class ha bacteriocin) inhibitory to the opportunistic pathogen Listeria monocytogenes. Bacterial isolates with antimicrobial activity may be useful for food biopreservation and also for developing probiotics. To evaluate the probiotic potential of L. sakei I, it was tested for (i) in vitro gastric resistance (with synthetic gastric juice adjusted to pH 2.0, 2.5, or 3.0); (ii) survival and bacteriocin production in the presence of bile salts and commercial prebiotics (inulin and oligofructose); (iii) adhesion to Caco-2 cells; and (iv) effect on the adhesion of L. monocytogenes to Caco-2 cells and invasion of these cells by the organism. The results showed that L. sakei I survival in gastric environment varied according to pH, with the maximum survival achieved at pH 3.0, despite a 4-log reduction of the population after 3 h. Regarding the bile salt tolerance and influence of prebiotics, it was observed that L. sakei 1 survival rates were similar (P > 0.05) for all de Man Rogosa Shame (MRS) broth formulations when tests were done after 4 h of incubation. However, after incubation for 24 h, the survival of L. sakei 1 in MRS broth was reduced by 1.8 log (P < 0.001), when glucose was replaced by either inulin or oligofructose (without Oxgall). L. sakei 1 was unable to deconjugate bile salts, and there was a significant decrease (1.4 log) of the L. sakei 1 population in regular MRS broth plus Oxgall (P < 0.05). In spite of this, tolerance levels of L. sakei 1 to bile salts were similar in regular MRS broth and in MRS broth with oligofructose. Lower bacteriocin production was observed in MRS broth when inulin (3,200 AU/ml) or oligofructose (2,400 AU/ml) was used instead of glucose (6,400 AU/ml). L. sakei I adhered to Caco-2 cells, and its cell-free pH-neutralized supernatant containing sakacin I led to a significant reduction of in vitro listerial invasion of human intestinal Caco-2 cells.
Resumo:
This study aimed at enumerating molds (heat-labile and heat-resistant) on the surface of paperboard material to be filled with tomato pulps through an aseptic system and at determining the most heat-and hydrogen peroxide-resistant strains. A total of 118 samples of laminated paperboard before filling were collected, being 68 before and 50 after the hydrogen peroxide bath. Seven molds, including heat-resistant strains (Penicillium variotii and Talaromyces flavus) with counts ranging between 0.71 and 1.02 CFU/cm(2) were isolated. P. variotii was more resistant to hydrogen peroxide than T. flavus and was inactivated after heating at 85 degrees C/15 min. When exposed to 35 % hydrogen peroxide at 25 degrees C, T. flavus (F5E2) and N. fischeri (control) were less resistant than P. variotti (F1A1). P. citrinum (F7E2) was shown to be as resistant as P. variotti. The D values (the time to cause one logarithmic cycle reduction in a microbial population at a determined temperature) for spores of P. variotii (F1A1) and N. fischeri (control) with 4 months of age at 85 and 90 degrees C were 3.9 and 4.5 min, respectively. Although the contamination of packages was low, the presence of heat-and chemical-resistant molds may be of concern for package sterility and product stability during shelf-life. To our knowledge, this is the first report that focuses on the isolation of molds, including heat-resistant ones, contaminating paperboard packaging material and on estimating their resistance to the chemical and physical processes used for packaging sterilization.