17 resultados para Biting force
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The centrifuge technique was used to investigate the influence of particle size, applied compression, and substrate material (stainless steel, glass, Teflon, and poly(vinyl chloride)) on particle-surface adhesion force. For this purpose, phosphatic rock (rho(p) = 3090 kg/m(3)) and manioc starch particles (rho(p) = 1480 kg/m(3)) were used as test particles. A microcentrifuge that reached a maximum rotation speed of 14 000 rpm and which contained specially designed centrifuge tubes was used in the adhesion force measurements. The curves showed that the adhesion force profile followed a normal log distribution. The adhesion force increased linearly with particle size and with the increase of each increment of compression force. The manioc starch particles presented greater adhesion forces than the phosphatic rock particles for all particle sizes studied. The glass substrate showed a higher adherence than the other materials, probably due to its smoother topographic surface roughness in relation to the other substrata.
Resumo:
We have explored the effects of atmospheric environment on Kelvin force microscopy (KFM) measurements of potential difference between different regions of test polycrystalline diamond surfaces. The diamond films were deposited by microwave plasma-assisted chemical vapor deposition, which naturally produces hydrogen terminations on the surface of the films formed. Selected regions were patterned by electron-beam lithography and chemical terminations of oxygen or fluorine were created by exposure to an oxygen or fluorine plasma source. For KFM imaging, the samples were mounted in a hood with a constant flow of helium gas. Successive images were taken over a 5-h period showing the effect of the environment on KFM imaging. We conclude that the helium flow removes water molecules adsorbed on the surface of the samples, resulting in differences in surface potential between adjacent regions. The degree of water removal is different for surfaces with different terminations. The results highlight the importance of taking into account the atmospheric environment when carrying out KFM analysis. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Optimal levels of noise stimulation have been shown to enhance the detection and transmission of neural signals thereby improving the performance of sensory and motor systems. The first series of experiments in the present study aimed to investigate whether subsensory electrical noise stimulation applied over the triceps surae (TS) in seated subjects decreases torque variability during a force-matching task of isometric plantar flexion and whether the same electrical noise stimulation decreases postural sway during quiet stance. Correlation tests were applied to investigate whether the noise-induced postural sway decrease is linearly predicted by the noise-induced torque variability decrease. A second series of experiments was conducted to investigate whether there are differences in torque variability between conditions in which the subsensory electrical noise is applied only to the TS, only to the tibialis anterior (TA) and to both TS and TA, during the force-matching task with seated subjects. Noise stimulation applied over the TS muscles caused a significant reduction in force variability during the maintained isometric force paradigm and also decreased postural oscillations during quiet stance. Moreover, there was a significant correlation between the reduction in force fluctuation and the decrease in postural sway with the electrical noise stimulation. This last result indicates that changes in plantar flexion force variability in response to a given subsensory random stimulation of the TS may provide an estimate of the variations in postural sway caused by the same subsensory stimulation of the TS. We suggest that the decreases in force variability and postural sway found here are due to stochastic resonance that causes an improved transmission of proprioceptive information. In the second series of experiments, the reduction in force variability found when noise was applied to the TA muscle alone did not reach statistical significance, suggesting that TS proprioception gives a better feedback to reduce force fluctuation in isometric plantar flexion conditions.
Resumo:
We calculate the drag force experienced by an in finitely massive quark propagating at constant velocity through an anisotropic, strongly coupled N = 4 plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient mu can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically mu proportional to p. We discuss the conditions under which this behaviour may extend to more general situations.
Resumo:
Objective: The objective of this study was to analyze the bacterial morphology by atomic force microscopy (AFM) after the application of low-level laser therapy (LLLT) in in vitro culture of Staphylococcus aureus ATCC 29213. Background data: Infections caused by S. aureus are among the highest occurring in hospitals and can often colonize pressure ulcers. LLLT is among the methods used to accelerate the healing of ulcers. However, there is no consensus on its effect on bacteria. Materials and methods: After being cultivated and seeded, the cultures were irradiated using wavelengths of 660, 830, and 904 nm at fluences of 0, 1, 2, 3, 4, 5, and 16 J/cm(2). Viable cells of S. aureus strain were counted after 24 h incubation. To analyze the occurrence of morphological changes, the topographical measurement of bacterial cells was analyzed using the AFM. Results: The overall assessment revealed that the laser irradiation reduced the S. aureus growth using 830 and 904 nm wavelengths; the latter with the greatest inhibition of the colony-forming units (CFU/mL) (331.1 +/- 38.19 and 137.38 +/- 21.72). Specifically with 660 nm, the statistical difference occurred only at a fluence of 3 J/cm(2). Topographical analysis showed small changes in morphological conformity of the samples tested. Conclusions: LLLT reduced the growth of S. aureus with 830 and 904 nm wavelengths, particularly with 904 nm at a fluence of 3 J/cm(2), where the greatest topographical changes of the cell structure occurred.
Resumo:
Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.
Resumo:
A dimensional analysis of the classical equations related to the dynamics of vector-borne infections is presented. It is provided a formal notation to complete the expressions for the Ross' threshold theorem, the Macdonald's basic reproduction "rate" and sporozoite "rate", Garret-Jones' vectorial capacity and Dietz-Molineaux-Thomas' force of infection. The analysis was intended to provide a formal notation that complete the classical equations proposed by these authors.
Resumo:
Cornachione AS, Rassier DE. A non-cross-bridge, static tension is present in permeabilized skeletal muscle fibers after active force inhibition or actin extraction. Am J Physiol Cell Physiol 302: C566-C574, 2012. First published November 16, 2011; doi: 10.1152/ajpcell.00355.2011.-When activated muscle fibers are stretched, there is a long-lasting increase in the force. This phenomenon, referred to as "residual force enhancement," has characteristics similar to those of the " static tension," a long-lasting increase in force observed when muscles are stretched in the presence of Ca2+ but in the absence of myosin-actin interaction. Independent studies have suggested that these two phenomena have a common mechanism and are caused either by 1) a Ca2+-induced stiffening of titin or by 2) promoting titin binding to actin. In this study, we performed two sets of experiments in which activated fibers (pCa(2+) 4.5) treated with the myosin inhibitor blebbistatin were stretched from 2.7 to 2.8 mu m at a speed of 40 L-o/s, first, after partial extraction of TnC, which inhibits myosin-actin interactions, or, second, after treatment with gelsolin, which leads to the depletion of thin (actin) filaments. We observed that the static tension, directly related with the residual force enhancement, was not changed after treatments that inhibit myosin-actin interactions or that deplete fibers from troponin C and actin filaments. The results suggest that the residual force enhancement is caused by a stiffening of titin upon muscle activation but not with titin binding to actin. This finding indicates the existence of a Ca2+-regulated, titin-based stiffness in skeletal muscles.
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Post-rest contraction (PRC) of cardiac muscle provides indirect information about the intracellular calcium handling. Objective: Our aim was to study the behavior of PRC, and its underlying mechanisms, in rats with myocardial infarction. Methods: Six weeks after coronary occlusion, the contractility of papillary muscles (PM) obtained from sham-operated (C, n = 17), moderate infarcted (MMI, n = 10) and large infarcted (LMI, n = 14) rats was evaluated, following rest intervals of 10 to 60 seconds before and after incubation with lithium chloride (Li+) substituting sodium chloride or ryanodine (Ry). Protein expression of SR Ca(2+)-ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLB) and phospho-Ser(16)-PLB were analyzed by Western blotting. Results: MMI exhibited reduced PRC potentiation when compared to C. Opposing the normal potentiation for C, post-rest decays of force were observed in LMI muscles. In addition, Ry blocked PRC decay or potentiation observed in LMI and C; Li+ inhibited NCX and converted PRC decay to potentiation in LMI. Although MMI and LMI presented decreased SERCA2 (72 +/- 7% and 47 +/- 9% of Control, respectively) and phospho-Ser(16)-PLB (75 +/- 5% and 46 +/- 11%, respectively) protein expression, overexpression of NCX (175 +/- 20%) was only observed in LMI muscles. Conclusion: Our results showed, for the first time ever, that myocardial remodeling after MI in rats may change the regular potentiation to post-rest decay by affecting myocyte Ca(2+) handling proteins. (Arq Bras Cardiol 2012;98(3):243-251)
Models of passive and active dendrite motoneuron pools and their differences in muscle force control
Resumo:
Motoneuron (MN) dendrites may be changed from a passive to an active state by increasing the levels of spinal cord neuromodulators, which activate persistent inward currents (PICs). These exert a powerful influence on MN behavior and modify the motor control both in normal and pathological conditions. Motoneuronal PICs are believed to induce nonlinear phenomena such as the genesis of extra torque and torque hysteresis in response to percutaneous electrical stimulation or tendon vibration in humans. An existing large-scale neuromuscular simulator was expanded to include MN models that have a capability to change their dynamic behaviors depending on the neuromodulation level. The simulation results indicated that the variability (standard deviation) of a maintained force depended on the level of neuromodulatory activity. A force with lower variability was obtained when the motoneuronal network was under a strong influence of PICs, suggesting a functional role in postural and precision tasks. In an additional set of simulations when PICs were active in the dendrites of the MN models, the results successfully reproduced experimental results reported from humans. Extra torque was evoked by the self-sustained discharge of spinal MNs, whereas differences in recruitment and de-recruitment levels of the MNs were the main reason behind torque and electromyogram (EMG) hysteresis. Finally, simulations were also used to study the influence of inhibitory inputs on a MN pool that was under the effect of PICs. The results showed that inhibition was of great importance in the production of a phasic force, requiring a reduced co-contraction of agonist and antagonist muscles. These results show the richness of functionally relevant behaviors that can arise from a MN pool under the action of PICs.
Resumo:
Objective: To evaluate the dentoskeletal changes of Class II malocclusion treatment with the Twin Force Bite Corrector (TFBC). Materials and Methods: The sample comprised 86 lateral cephalograms obtained from 43 subjects with Class II division 1 malocclusion; the subjects were divided into two groups. The experimental group comprised 23 patients with a mean initial age of 12.11 years who were treated with the TFBC for a mean period of 2.19 years. The control group included 40 lateral cephalograms from 20 Class II nontreated patients, with an initial mean age of 12.55 years and a mean observation period of 2.19 years. The lateral cephalograms were evaluated before and after orthodontic treatment in group 1 and in the beginning and end of the observation period in group 2. t-Tests were used to compare the initial and final cephalometric characteristics of the groups as well as the amount of change. Results: The experimental group presented greater maxillary growth restriction and mandibular retrusion than the control group, as well as greater maxillomandibular relationship improvement and greater labial tipping of the mandibular incisors. The results also showed a greater decrease in overbite and overjet in the experimental group, and there were no statistically significant differences in the craniofacial growth pattern between groups. Conclusions: The TFBC promotes restriction of anterior maxillary displacement without significant changes in mandibular length and position and improvement of maxillomandibular relationship without changes in facial growth and significant buccal tipping of mandibular incisors. Class II correction with the TFBC occurred primarily as a result of dentoalveolar changes.
Resumo:
Background: High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the redominant mechanisms. Methods: Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results: Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion: The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training.
Resumo:
Reinforced concrete beam elements are submitted to applicable loads along their life cycle that cause shear and torsion. These elements may be subject to only shear, pure torsion or both, torsion and shear combined. The Brazilian Standard Code ABNT NBR 6118:2007 [1] fixes conditions to calculate the transverse reinforcement area in beam reinforced concrete elements, using two design models, based on the strut and tie analogy model, first studied by Mörsch [2]. The strut angle θ (theta) can be considered constant and equal to 45º (Model I), or varying between 30º and 45º (Model II). In the case of transversal ties (stirrups), the variation of angle α (alpha) is between 45º and 90º. When the equilibrium torsion is required, a resistant model based on space truss with hollow section is considered. The space truss admits an inclination angle θ between 30º and 45º, in accordance with beam elements subjected to shear. This paper presents a theoretical study of models I and II for combined shear and torsion, in which ranges the geometry and intensity of action in reinforced concrete beams, aimed to verify the consumption of transverse reinforcement in accordance with the calculation model adopted As the strut angle on model II ranges from 30º to 45º, transverse reinforcement area (Asw) decreases, and total reinforcement area, which includes longitudinal torsion reinforcement (Asℓ), increases. It appears that, when considering model II with strut angle above 40º, under shear only, transverse reinforcement area increases 22% compared to values obtained using model I.