4 resultados para Biomedical technicians

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, different beta titanium alloys have been developed for biomedical applications with a combination of mechanical properties including a low Young's modulus, high strength, fatigue resistance and good ductility with excellent corrosion resistance. From this perspective, a new metastable beta titanium Ti-12Mo-3Nb alloy was developed with the replacement of both vanadium and aluminum from the traditional Ti-6Al-4V alloy. This paper presents the microstructure, mechanical properties and corrosion resistance of the Ti-12Mo-3Nb alloy heat-treated at 950 degrees C for 1 h. The material was characterized by X-ray diffraction and by scanning electron microscopy. Tensile tests were carried out at room temperature. Corrosion tests were performed using Ringer's solution at 25 degrees C. The results showed that this alloy could potentially be used for biomedical purposes due to its good mechanical properties and spontaneous passivation. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Over the last years, it is known that in some cases metal devices for biomedical applications present some disadvantages suggesting absorbable materials (natural or synthetic) as an alternative of choice. Here, our goal was to evaluate the biological response of a xenogenic pin, derived from bovine cortical bone, intraosseously implanted in the femur of rats. Material and methods: After 10, 14, 30 and 60 days from implantation, the animals (n = 5/period) were killed and the femurs carefully collected and dissected out under histological demands. For identifying the osteoclastogenesis level at 60 days, we performed the immunohistochemisty approach using antibody against RANKL. Results: Interestingly, our results showed that the incidence of neutrophils and leukocytes was observed only at the beginning (10 days). Clear evidences of pin degradation by host cells started at 14 days and it was more intensive at 60 days, when we detected the majority of the presence of giant multinucleated cells, which were very similar to osteoclast cells contacting the implanted pin. To check osteoclastogenesis at 60 days, we evaluated RANKL expression and it was positive for those resident multinucleated cells while a new bone deposition was verified surrounding the pins in all evaluated periods. Conclusions: Altogether, our results showed that pins from fully processed bovine bone are biocompatible and absorbable, allowing bone neoformation and it is a promissory device for biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers from natural sources are particularly useful as biomaterials for medical devices applications. In this study, the results of characterization of a gelatin network electrolyte doped with europium triflate (Eu(CF3SO3)(3)) are described. The unusual electronic properties of the trivalent lanthanide ions make them well suited as luminescent reporter groups, with many applications in biotechnology. Samples of solvent-free electrolytes were prepared with a range of guest salt concentration. Materials based on Eu(CF3SO3)(3) were obtained as mechanically robust, flexible, transparent, and completely amorphous films. Samples were characterized by thermal analysis (thermo-gravimetry analysis (TGA) and differential scanning calorimetry (DSC), electrochemical stability, scanning electronmicroscopy (SEM), and photoluminescence spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys are widely used in the manufacture of biomedical implants because they possess an excellent combination of physical properties and outstanding biocompatibility. Today, the most widely used alloy is Ti-6Al-4V, but some studies have reported adverse effects with the long-term presence of Al and V in the body, without mentioning that the elasticity modulus value of this alloy is far superior to the bone. Thus, there is a need to develop new Ti-based alloys without Al and V that have a lower modulus, greater biocompatibility, and similar mechanical strength. In this paper, we investigated the effect of Nb as a substitutional solute on the mechanical properties of Ti-Nb alloys, prepared in an arc-melting furnace and characterized by density, X-ray diffraction, optical microscopy, hardness and elasticity modulus measurements. The X-ray and microscopy measurements show a predominance of the α phase. The microhardness values showed a tendency to increase with the concentration of niobium in the alloy. Regarding the elasticity modulus, it was observed a nonlinear behavior with respect to the concentration of niobium. This behavior is associated with the presence of the α phase.