3 resultados para BioArray Software Environment
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Bound-constrained minimization is a subject of active research. To assess the performance of existent solvers, numerical evaluations and comparisons are carried on. Arbitrary decisions that may have a crucial effect on the conclusions of numerical experiments are highlighted in the present work. As a result, a detailed evaluation based on performance profiles is applied to the comparison of bound-constrained minimization solvers. Extensive numerical results are presented and analyzed.
Resumo:
Mapping of soil has been highlighted in the scientific community, because as alertness about the environment increases, it is necessary to understand more and more about the distribution of the soil in the landscape, as well as its potential and its limitations for the use. In that way the main aim of this study was to apply indices representing landscape with the use of geoprocessing to give support in the delimitation of different compartments of landscape. Primary indices used were altitude above channel network (AACN) and secondary channel network base level (CNBL), multiresolution index of valley bottom flatness (MRVBF) and Wetness index (ITW), having as object of study the Canguiri Experimental Farm, located in Pinhais, Curitiba's Metropolitan region. To correlate the chemical attributes and granulometric ones in sampling groups, totalizing 17 points (Sugamosto, 2002), a matrix of a simple linear correlation (Pearson) with the indices of the landscape were generated in the Software Statistica. The conclusion is that the indices representing the landscape used in the analysis of groupings were efficient as support to map soil at the level of suborder of Brazilian Soil Classification System.
Resumo:
Abstract Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.