27 resultados para Bile salt micelles
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Lactobacillus sakei 1 is a food isolate that produces a heat-stable antimicrobial peptide (sakacin 1, a class ha bacteriocin) inhibitory to the opportunistic pathogen Listeria monocytogenes. Bacterial isolates with antimicrobial activity may be useful for food biopreservation and also for developing probiotics. To evaluate the probiotic potential of L. sakei I, it was tested for (i) in vitro gastric resistance (with synthetic gastric juice adjusted to pH 2.0, 2.5, or 3.0); (ii) survival and bacteriocin production in the presence of bile salts and commercial prebiotics (inulin and oligofructose); (iii) adhesion to Caco-2 cells; and (iv) effect on the adhesion of L. monocytogenes to Caco-2 cells and invasion of these cells by the organism. The results showed that L. sakei I survival in gastric environment varied according to pH, with the maximum survival achieved at pH 3.0, despite a 4-log reduction of the population after 3 h. Regarding the bile salt tolerance and influence of prebiotics, it was observed that L. sakei 1 survival rates were similar (P > 0.05) for all de Man Rogosa Shame (MRS) broth formulations when tests were done after 4 h of incubation. However, after incubation for 24 h, the survival of L. sakei 1 in MRS broth was reduced by 1.8 log (P < 0.001), when glucose was replaced by either inulin or oligofructose (without Oxgall). L. sakei 1 was unable to deconjugate bile salts, and there was a significant decrease (1.4 log) of the L. sakei 1 population in regular MRS broth plus Oxgall (P < 0.05). In spite of this, tolerance levels of L. sakei 1 to bile salts were similar in regular MRS broth and in MRS broth with oligofructose. Lower bacteriocin production was observed in MRS broth when inulin (3,200 AU/ml) or oligofructose (2,400 AU/ml) was used instead of glucose (6,400 AU/ml). L. sakei I adhered to Caco-2 cells, and its cell-free pH-neutralized supernatant containing sakacin I led to a significant reduction of in vitro listerial invasion of human intestinal Caco-2 cells.
Resumo:
Addition of salts, especially perchlorates, to zwitterionic micelles of SB3-14, C(14)H(29)NMe(2)(+)(CH(2))(3)SO(3)(-), induces anionic character and uptake of H(3)O(+) by SB3-14 micelles. Thus, the addition of alkali metal perchlorates accelerates the acid hydrolysis of 2-(p-heptoxypheny1)-1,3-dioxolane, HPD, in the presence of SB3-14 micelles, which depends on the local proton concentration at the micelle surface. The addition of metal chlorides to solutions of such perchlorate-modified SB3-14 micelles decreases both the negative zeta potential of the micelles and the observed rate constant for acid hydrolysis of HPD. The effect of the monovalent cations Li(+), Na(+), and K(+) is smaller than that of the divalent cations Be(2+), Mg(2+), and Ca(2+), and much smaller than that of the trivalent cations Al(3+), La(3+), and Er(3+). The major factor responsible for this cation valence dependence of these effects is shown to be electrostatic in nature, reflecting the strong dependence of the micellar surface potential on the cation valence. The fact that the salt effects are not identical after correction for the electrostatic effects indicates that additional secondary nonelectrostatic effects may contribute as well.
Resumo:
Aqueous dispersions of dimyristoyl phosphatidylglycerol (DMPG), at low ionic strength, display uncommon thermal behavior. Models for such behavior need to assign a form to the lipid aggregate. Although most studies accept the presence of lipid vesicles in the lipid gel and fluid phases, this is still controversial. With electron spin resonance (ESR) spectra of spin labels incorporated into DMPG aggregates, quantification of [C-14]sucrose entrapped by the aggregates, and viscosity measurements, we demonstrate the existence of leaky vesicles in dispersions of DMPG at low ionic strength, in both gel and fluid phases of the lipid. As a control system, the ubiquitous lipid dimyristoyl phosphatidylcholine (DMPC) was used. For DMPG in the gel phase, spin labeling only indicated the presence of lipid bilayers, strongly suggesting that DMPG molecules are organized as vesicles and not micelles or bilayer fragments (bicelles), as the latter has a non-bilayer structure at the edges. Quantification of [C-14]sucrose entrapping by DMPG aggregates revealed the presence of highly leaky vesicles. Due to the short hydrocarbon chains (C-14 atoms), DMPC vesicles were also found to be partially permeable to sucrose, but not as much as DMPG vesicles. Viscosity measurements, with the calculation of the intrinsic viscosiiy of the lipid aggregate, showed that DMPG vesicles are rather similar in the gel and fluid phases, and quite different from aggregates observed along the gel-fluid transition. Taken together, our data strongly supports that DMPG forms leaky vesicles at both gel and fluid phases. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The equilibrium of meso-tetrakis(4-N-methylpyridiniumyl)porphyrin (TMPyP) in aqueous solution in the presence of surfactants was studied by optical spectroscopic techniques and SAXS (small angle X-ray scattering). Anionic SDS (sodium dodecyl sulfate), zwitterionic HPS (N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate) and nonionic TRITON X-100 (t-octyl-phenoxypolyethoxyethanol), surfactants were used. TMPyP is characterized by a protonation equilibrium with a pK(a) around 1.0, associated with the diacid-free base transition, and a second pK(a) around 12.0 related with the transition between the free base and the monoanion form. Three independent species were observed for TMPyP at pH 6.0 as a function of SDS concentration: free TMPyP, TMPyP-SDS aggregates and porphyrin monomer bound to micelles. For HPS and TRITON X-100, the equilibrium of TMPyP as a function of pH is quite similar to that obtained in pure aqueous solution: no aggregation was observed, suggesting that electrostatic contribution is the major factor in the interaction between TMPyP and surfactants. SAXS data analysis demonstrated a prolate ellipsoidal shape for SDS micelles; no significant changes in shape and size were observed for SDS-TMPyP co-micelles. Moreover, the ionization coefficient, alpha, decreases with the increase of the porphyrin concentration, suggesting the ""screening"" of the anionic charge of SDS by the cationic porphyrin. These results are consistent with optical absorption, fluorescence and RLS (resonance light scattering) spectroscopies data, allowing to conclude that neutral surfactants present a smaller interaction with the cationic porphyrin as compared with an ionic surfactant. Therefore, the interaction of TMPyP with the ionic and nonionic surfactants is predominantly due to the electrostatic contribution. Copyright (c) 2008 Society of Porphyrins & Phthalocyanines.
Resumo:
Blue rayon (BR) in combination with the Salmonella/microsome assay was used to evaluate the mutagenicity of fish bile samples. Specimens of Mugil curema from two sites were collected over a 1-year period. Piacaguera channel contains high concentrations of total polycyclic aromatic hydrocarbons (PAHs) and other contaminants, while Bertioga channel was considered the reference sites in this study. Bile was extracted with BR and tested with TA98, TA100, and YG1041 strains with and without S9 in dose response experiments. PAH metabolite equivalents were analyzed using reverse-phase high performance liquid chromatography /fluorescence. Higher mutagenic responses were observed for the contaminated site; YG1041 with S9 was the most sensitive strain/condition. Mutagenicity ranged from 3,900 to 14,000 rev./mg at the contaminated site and from 1,200 to 2,500 rev./mg of BR at the reference site. The responses of YG1041 were much higher in comparison with the TA98 indicating the presence of polycyclic compounds from the aromatic amine class that cause frameshift mutation. TA100 showed a positive mutagenic response that was enhanced following S9 treatment at both sites suggesting the presence of polycyclic compounds that require metabolic activation. benzo(a)pyrene, naphthalene, and phenanthrene metabolite equivalents were also higher in the bile of fish collected at the contaminated site. It was not possible to correlate the PAH metabolite quantities with the mutagenic potency. Thus, a combination of the Salmonella/microsome assay with YG1041 with S9 from BR bile extract seems to be an acceptable biomarker for monitoring the exposure of fish to mutagenic polycyclic compounds. Environ. Mal. Mutagen. 51:173-179, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Objective. To describe individual attitudes, knowledge, and behavior regarding salt intake, its dietary sources, and current food-labeling practices related to salt and sodium in five sentinel countries of the Americas. Methods. A convenience sample of 1 992 adults (>= 18 years old) from Argentina, Canada, Chile, Costa Rica, and Ecuador (approximately 400 from each country) was obtained between September 2010 and February 2011. Data collection was conducted in shopping malls or major commercial areas using a questionnaire containing 33 questions. Descriptive estimates are presented for the total sample and stratified by country and sociodemographic characteristics of the studied population. Results. Almost 90% of participants associated excess intake of salt with the occurrence of adverse health conditions, more than 60% indicated they were trying to reduce their current intake of salt, and more than 30% believed reducing dietary salt to be of high importance. Only 26% of participants claimed to know the existence of a recommended maximum value of salt or sodium intake and 47% of them stated they knew the content of salt in food items. More than 80% of participants said that they would like food labeling to indicate high, medium, and low levels of salt or sodium and would like to see a clear warning label on packages of foods high in salt. Conclusions. Additional effort is required to increase consumers' knowledge about the existence of a maximum limit for intake and to improve their capacity to accurately monitor and reduce their personal salt consumption.
Resumo:
The viscosity of AOT/water/decane water-in-oil microemulsions exhibits a well-known maximum as a function of water/AOT molar ratio, which is usually attributed to increased attractions among nearly spherical droplets. The maximum can be removed by adding salt or by changing the oil to CCl4. Systematic small-angle X-ray scattering (SAXS) measurements have been used to monitor the structure of the microemulsion droplets in the composition regime where the maximum appears. On increasing the droplet concentration, the scattering intensity is found to scale with the inverse of the wavevector, a behavior which is consistent with cylindrical structures. The inverse wavevector scaling is not observed when the molar ratio is changed, moving the system away from the value corresponding to the viscosity maximum. It is also not present in the scattering from systems containing enough added salt to essentially eliminate the viscosity maximum. An asymptotic analysis of the SAXS data, complemented by some quantitative modeling, is consistent with cylindrical growth of droplets as their concentration is increased. Such elongated structures are familiar from related AOT systems in which the sodium counterion has been exchanged for a divalent one. However, the results of this study suggest that the formation of non-spherical aggregates at low molar ratios is an intrinsic property of AOT.
Resumo:
Background/Purpose: The mechanisms of increased collagen production and liver parenchyma fibrosis are poorly understood. These phenomena are observed mainly in children with biliary obstruction (BO), and in a great number of patients, the evolution to biliary cirrhosis and hepatic failure leads to the need for liver transplantation before adolescence. However, pediatric liver transplantation presents with biliary complications in 20% to 30% of cases in the postoperative period. Intra-or extrahepatic stenosis of bile ducts is frequent and may lead to secondary biliary cirrhosis and the need for retransplantation. It is unknown whether biliary stenosis involving isolated segments or lobes may affect the adjacent nonobstructed lobes by paracrine or endocrine means, leading to fibrosis in this parenchyma. Therefore, the present study aimed to create an experimental model of selective biliary duct ligation in young animals with a subsequent evaluation of the histologic and molecular alterations in liver parenchyma of the obstructed and nonobstructed lobes. Methods: After a pilot study to standardize the surgical procedures, weaning rats underwent ligation of the bile ducts of the median, left lateral, and caudate liver lobes. The bile duct of the right lateral lobe was kept intact. To avoid intrahepatic biliary duct collaterals neoformation, the parenchymal connection between the right lateral and median lobes was clamped. The animals were divided into groups according to the time of death: 1, 2, 3, 4, and 8 weeks after surgical procedure. After death, the median and left lateral lobes (with BO) and the right lateral lobe (without BO [NBO]) were harvested separately. A group of 8 healthy nonoperated on animals served as controls. Liver tissues were subjected to histologic evaluation and quantification of the ductular proliferation and of the portal fibrosis. The expressions of smooth muscle alpha-actin (alpha-SMA), desmin, and transforming growth factor beta 1 genes were studied by molecular analyses (semiquantitative reverse transcriptase-polymerase chain reaction and real-time polymerase chain reaction, a quantitative method). Results: Histologic analyses revealed the occurrence of ductular proliferation and collagen formation in the portal spaces of both BO and NBO lobes. These phenomena were observed later in NBO than BO. Bile duct density significantly increased 1 week after duct ligation; it decreased after 2 and 3 weeks and then increased again after 4 and 8 weeks in both BO and NBO lobes. The portal space collagen area increased after 2 weeks in both BO and NBO lobes. After 3 weeks, collagen deposition in BO was even higher, and in NBO, the collagen area started decreasing after 2 weeks. Molecular analyses revealed increased expression of the alpha-SMA gene in both BO and NBO lobes. The semiquantitative and quantitative methods showed concordant results. Conclusions: The ligation of a duct responsible for biliary drainage of the liver lobe promoted alterations in the parenchyma and in the adjacent nonobstructed parenchyma by paracrine and/or endocrine means. This was supported by histologic findings and increased expression of alpha-SMA, a protein related to hepatic fibrogenesis. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest.
Resumo:
Interfacial concentrations of chloride and bromide ions, with Li+, Na+, K+, Rb+, Cs+, trimethylammonium (TMA(+)), Ca2+, and Mg2+ as counterions, were determined by chemical trapping in micelles formed by two zwitterionic surfactants, namely N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and hexadecylphosphorylcholine (HDPC) micelles. Appropriate standard curves for the chemical trapping method were obtained by measuring the product yields of chloride and bromide salts with 2,4,6-trimethyl-benzenediazonium (BF4) in the presence of low molecular analogs (N,N,N-trimethyl-propane sulfonate and methyl-phosphorylcholine) of the employed surfactants. The experimentally determined values for the local Br- (Cl-) concentrations were modeled by fully integrated non-linear Poisson Boltzmann equations. The best fits to all experimental data were obtained by considering that ions at the interface are not fixed at an adsorption site but are free to move in the interfacial plane. In addition, the calculation of ion distribution allowed the estimation of the degree of ion coverage by using standard chemical potential differences accounting for ion specificity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This paper reports the spectroscopic study on the structural differences of thermally induced cross-linking segments in polyaniline in its emeraldine salt (PANI-ES) and base (PANI-EB) forms. Casting films of PANI-ES (ES-film) and PANI-EB (EB-film) were prepared and heated at 150 degrees C under atmospheric air for 30 min. Raman spectra excited at 632.8 nm of heated ES-film presented the characteristic bands of phenazine-like structures at 1638, 1392, and 575 cm(-1), whereas EB-film showed lower relative intensities for these bands. The lower content of phenazine-like segments in heated EB-film is related to residual polaronic segments from preparation procedures, as revealed by Raman. This statement was confirmed by a sequence of thermal and doping experiments in both films. Quantum-chemical calculations by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) showed that the phenazine-like structure presents the intense Raman band at 1350 cm(-1) due to heterocycle breathing mode, and the non-phenazine-like structure (substituted hydrophenazine-type) presents higher energy for HOMO-LUMO transition, indicating the lack of conjugation in the heterocycle compared with the phenazine-like structure. According to experimental and theoretical data reported here, it is proposed that only thermally treated PANI-ES presents phenazine-like rings, whereas PANI-EB presents heterocyclic non-aromatic structures.
Resumo:
beta-Adrenoceptor (beta-AR)-mediated relaxation plays an important role in the regulation of vascular tone. beta-AR-mediated vascular relaxation is reduced in various disease states and aging. We hypothesized that beta-AR-mediated vasodilatation is impaired in DOCA-salt hypertension due to alterations in the cAMP pathway. beta-AR-mediated relaxation was determined in small mesenteric arteries from DOCA-salt hypertensive and control uninephrectomized (Uni) rats. To exclude nitric oxide (NO) and cyclooxygenase (COX) pathways, relaxation responses were determined in the presence of L-NNA and indomethacin, NO synthase inhibitor and COX inhibitors, respectively. Isoprenaline (ISO)-induced relaxation was reduced in arteries from DOCA-salt compared to Uni rats. Protein kinase A (PKA) inhibitors (H89 or Rp-cAMPS) or adenylyl cyclase inhibitor (SQ22536) did not abolish the difference in ISO-induced relaxation between the groups. Forskolin (adenylyl cyclase activator)-induced relaxation was similar between the groups. The inhibition of IKCa/SKCa channels (TRAM-34 plus UCL1684) or BKCa channels (iberiotoxin) reduced ISO-induced relaxation only in Uni rats and abolished the relaxation differences between the groups. The expression of SKCa channel was decreased in DOCA-salt arteries. The expression of BKCa channel a subunit was increased whereas the expression of BKCa channel p subunit was decreased in DOCA-salt arteries. The expression of receptor for activated C kinase 1 (RACK1), which is a binding protein for BKG, channel and negatively modulates its activity, was increased in DOCA-salt arteries. These results suggest that the impairment of beta-AR-mediated relaxation in DOCA-salt mesenteric arteries may be attributable to altered IKCa/SKCa and/or BKCa channels activities rather than cAMP/PKA pathway. Impaired beta-AR-stimulated BKCa channel activity may be due to the imbalance between its subunit expressions and RACK1 upregulation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The role of different types of emulsifying saltssodium citrate (TSC), sodium hexametaphosphate (SHMP), sodium tripolyphosphate (STPP) and tetrasodium pyrophosphate (TSPP)on microstructure and rheology of requeijao cremoso processed cheese was determined. The cheeses manufactured with TSC, TSPP, and STPP behaved like concentrated solutions, while the cheese manufactured with SHMP exhibited weak gel behavior and the lowest values for the phase angle (G/G). This means that SHMP cheese had the protein network with the largest amount of molecular interactions, which can be explained by its highest degree of fat emulsification. Rotational viscometry indicated that all the spreadable cheeses behaved like pseudoplastic fluids. The cheeses made with SHMP and TSPP presented low values for the flow behavior index, meaning that viscosity was more dependent on shear rate. Regarding the consistency index, TSPP cheese showed the highest value, which could be attributed to the combined effect of its high pH and homogeneous fat particle size distribution.