27 resultados para Benthic marine community
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The purpose of this work was to verify the benthic macroinvertebrates community responses through environmental factors along a headwater tropical reservoir. Samplings were taken with a Van-Veen grab along the reservoir in littoral and profundal regions and in the headwater, next to the dam and the middle of the reservoir. Samples were taken during both wet and dry seasons. Dissolved oxygen concentrations, electric conductivity, temperature and pH near the sediment have been performed in situ, at every sampling station by using a multiprobe and Secchi disc. Total water phosphorus and chlorophyll a concentrations were analyzed to determine the trophic state index. Sediment's organic matter, total phosphorus, nitrogen concentrations and granulometric composition were measured. In order to verify which environmental variables would have more influence over the benthic macroinvertebrates community, a canonical correspondence analysis (CCA) was performed. The total number of recorded taxa was 28. Among them, the family Chironomidae (Diptera) was the richest group (19 taxa). It can be proposed that the benthic macroinvertebrates community may be influenced by environmental conditions such as nutrient and organic matter availability, as well as dissolved oxygen concentration. Macroinvertebrates are adequate bioindicators of water quality due to their sensibility to environmental changes mentioned before. Chironomus sp, Limnodrilus hoffmeisteri and Branchiura sowerbyi comprises a group that can be considered bio-indicators of eutrophic conditions. A second group can be considered as indicator of mesotrophic conditions. The presence of two or more members from that group which comprises Tanytarsini spp, Fissimentum sp, Pelomus sp and Goeldichironomus sp, like predominant taxa, may indicates mesotrophic conditions.
Resumo:
Structure of intertidal and subtidal benthic macrofauna in the northeastern region of Todos os Santos Bay (TSB), northeast Brazil, was investigated during a period of two years. Relationships with environmental parameters were studied through uni- and multivariate statistical analyses, and the main distributional patterns shown to be especially related to sediment type and content of organic fractions (Carbon, Nitrogen, Phosphorus), on both temporal and spatial scales. Polychaete annelids accounted for more than 70% of the total fauna and showed low densities, species richness and diversity, except for the area situated on the reef banks. These banks constitute a peculiar environment in relation to the rest of the region by having coarse sediments poor in organic matter and rich in biodetritic carbonates besides an abundant and diverse fauna. The intertidal region and the shallower area nearer to the oil refinery RLAM, with sediments composed mainly of fine sand, seem to constitute an unstable system with few highly dominant species, such as Armandia polyophthalma and Laeonereis acuta. In the other regions of TSB, where muddy bottoms predominated, densities and diversity were low, especially in the stations near the refinery. Here the lowest values of the biological indicators occurred together with the highest organic compound content. In addition, the nearest sites (stations 4 and 7) were sometimes azoic. The adjacent Caboto, considered as a control area at first, presented low density but intermediate values of species diversity, which indicates a less disturbed environment in relation to the pelitic infralittoral in front of the refinery. The results of the ordination analyses evidenced five homogeneous groups of stations (intertidal; reef banks; pelitic infralittoral; mixed sediments; Caboto) with different specific patterns, a fact which seems to be mainly related to granulometry and chemical sediment characteristics.
Resumo:
We investigated the effects of the habitat-modifying green algae Caulerpa taxifolia on meiobenthic communities along the coast of New South Wales, Australia. Samples were taken from unvegetated sediments, sediments underneath the native seagrass Zostera capricorni, and sediments invaded by C. taxifolia at 3 sites along the coast. Meiofaunal responses to invasion varied in type and magnitude depending on the site, ranging from a slight increase to a substantial reduction in meiofauna and nematode abundances and diversity. The multivariate structure of meiofauna communities and nematode assemblages, in particular, differed significantly in sediments invaded by C. taxifolia when compared to native habitats, but the magnitude of this dissimilarity differed between the sites. These differential responses of meiofauna to C. taxifolia were explained by different sediment redox potentials. Sediments with low redox potential showed significantly lower fauna abundances, lower numbers of meiofaunal taxa and nematode species and more distinct assemblages. The response of meiofauna to C. taxifolia also depended on spatial scale. Whereas significant loss of benthic biodiversity was observed locally at one of the sites, at the larger scale C. taxifolia promoted an overall increase in nematode species richness by favouring species that were absent from the native environments. Finally, we suggest there might be some time-lags associated with the impacts of C. taxifolia and point to the importance of considering the time since invasion when evaluating the impact of invasive species.
Resumo:
The study of biological invasions can be roughly divided into three parts: detection, monitoring, mitigation. Here, our objectives were to describe the marine fauna of the area of the port of São Sebastião (on the northern coast of the state of São Paulo, in the São Sebastião Channel, SSC) to detect introduced species. Descriptions of the faunal community of the SSC with respect to native and allochthonous (invasive or potentially so) diversity are lacking for all invertebrate groups. Sampling was carried out by specialists within each taxonomic group, in December 2009, following the protocol of the Rapid Assessment Survey (RAS) in three areas with artificial structures as substrates. A total of 142 species were identified (61 native, 15 introduced, 62 cryptogenic, 4 not classified), of which 17 were Polychaeta (12, 1, 1, 3), 24 Ascidiacea (3, 6, 15, 0), 36 Bryozoa (17, 0, 18, 1), 27 Cmdana (2, 1, 24, 0), 20 Crustacea (11, 4, 5, 0), 2 Entoprocta (native), 16 Mollusca (13, 3, 0, 0). Twelve species are new occurrences for the SSC. Among the introduced taxa, two are new for coastal Brazil. Estimates of introduced taxa are conservative as the results of molecular studies suggest that some species previously considered cryptogenic are indeed introduced. We emphasize that the large number of cryptogenic species illustrates the need for a long-term monitoring program, especially in areas most susceptible to bioinvasion. We conclude that rapid assessment studies, even in relatively well-known regions, can be very useful for the detection of introduced species and we recommend that they be carried out on a larger scale in all ports with heavy ship traffic.
Resumo:
A thorough census of Admiralty Bay benthic biodiversity was completed through the synthesis of data, acquired from more than 30 years of observations. Most of the available records arise from successive Polish and Brazilian Antarctic expeditions organized since 1977 and 1982, respectively, but also include new data from joint collecting efforts during the International Polar Year (2007-2009). Geological and hydrological characteristics of Admiralty Bay and a comprehensive species checklist with detailed data on the distribution and nature of the benthic communities are provided. Approximately 1300 species of benthic organisms (excluding bacteria, fungi and parasites) were recorded from the bay`s entire depth range (0-500 m). Generalized classifications and the descriptions of soft-bottom and hard-bottom invertebrate communities are presented. A time-series analysis showed seasonal and interannual changes in the shallow benthic communities, likely to be related to ice formation and ice melt within the bay. As one of the best studied regions in the maritime Antarctic Admiralty Bay represents a legacy site, where continued, systematically integrated data sampling can evaluate the effects of climate change on marine life. Both high species richness and high assemblage diversity of the Admiralty Bay shelf benthic community have been documented against the background of habitat heterogeneity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Temporal, spatial and diel variation in the distribution and abundance of organisms is an inherent property of ecological systems. The present study describes these variations and the composition of decapod larvae from the surface waters of St Paul`s Rocks. The expeditions to the archipelago were carried out in April, August and November 2003, March 2004 and May 2005. Surface plankton samples were collected during the morning and dusk periods, inside the inlet and in increasing distances around the archipelago (similar to 150, 700 and 1500 m). The identification resulted in 51 taxa. Seven species, six genera and larvae of the families Pandalidae and Portunidae were identified for the first time in the area. The mean larval density varied from zero to 150.2 +/- 69.6 individuals 100 m(-3) in the waters surrounding the archipelago and from 1.7 +/- 3.0 to 12,827 +/- 15,073 individuals 100 m(-3) inside the inlet. Significant differences on larval density were verified between months and period of the day, but not among the three sites around the archipelago. Cluster and non-metric multidimensional scaling analysis indicated that the decapod larvae community was divided into benthic and pelagic assemblages. Indicator species analysis (ISA) showed that six Brachyura taxa were good indicators for the inlet, while three sergestids were the main species from the waters around the archipelago. These results suggest that St Paul`s Rocks can be divided into two habitats, based on larval composition, density and diversity values: the inlet and the waters surrounding the archipelago.
Resumo:
Organic matter quality, expressed as the proportion of chlorophyll a (Chl a) to degraded organic material (i.e. phaeopigments), is known to influence the structure of benthic associations and plays an important role in the functioning of the ecosystem. This study investigates the vertical distribution of microbial biomass, meiofauna and macrofauna with respect to organic matter variation in Ubatuba, Brazil, a southeastern, subtropical coastal area. On three occasions, samples were collected in exposed and sheltered stations, at high and low hydrodynamic conditions. We hypothesize that benthic assemblages will have high meio- and macrofaunal densities and high microbial biomass at the sediment surface at the sheltered site, and lower and vertically homogeneous microbial biomass and densities of meio- and macrofauna are expected at the exposed site. The accumulation of fresh organic matter at the sediment surface was observed at both stations over the three sampling dates, which contributed to the higher densities of meiofauna in the first layers of the sediment column. Macrofauna followed the same trend only at the exposed station, but changes in the number of species, biodiversity and feeding groups were registered for both stations. Microbial biomass increased at the sheltered station over the three sampling dates, whereas at the exposed station, microbial biomass was nearly constant. Physical exposure did not influence organic matter loading at the sites and therefore did not affect overall structure of benthic assemblages, which negates our original hypothesis. Most of the benthic system components reacted to organic matter quality and quantity, but relationships between different-sized organisms (i.e. competition and/or predation) may explain the unchanged microbial profiles at the exposed site and homogeneous vertical distribution of macrofauna at the sheltered site. In conclusion, the high quality of organic matter was a crucial factor in sustaining and regulating the benthic system, but coupled results showed that interactions between micro-, meio- and macrofauna can be highly complex.
Resumo:
Sunken parcels of macroalgae and wood provide important oases of organic enrichment at the deep-sea floor, yet sediment community structure and succession around these habitat islands are poorly evaluated. We experimentally implanted 100-kg kelp falls and 200 kg wood falls at 1670 m depth in the Santa Cruz Basin to investigate (1) macrofaunal succession and (2) species overlap with nearby whale-fall and cold-seep communities over time scales of 0.25-5.5 yr. The abundance of infaunal macrobenthos was highly elevated after 0.25 and 0.5 yr near kelp parcels with decreased macrofaunal diversity and evenness within 0.5 m of the falls. Apparently opportunistic species (e.g., two new species of cumaceans) and sulfide tolerant microbial grazers (dorvilleid polychaetes) abounded after 0.25-0.5 yr. At wood falls, opportunistic cumaceans become abundant after 0.5 yr, but sulfide tolerant species only became abundant after 1.8-5.5 yr, in accordance with the much slower buildup of porewater sulfides at wood parcels compared with kelp falls. Species diversity decreased significantly over time in sediments adjacent to the wood parcels, most likely due to stress resulting from intense organic loading of nearby sediments (up to 20-30% organic carbon). Dorvilleid and ampharetid polychaetes were among the top-ranked fauna at wood parcels after 3.0-5.5 yr. Sediments around kelp and wood parcels provided low-intensity reducing conditions that sustain a limited chemoautrotrophically-based fauna. As a result, macrobenthic species overlap among kelp, wood, and other chemosynthetic habitats in the deep NE Pacific are primarily restricted to apparently sulfide tolerant species such as dorvilleid polychaetes, opportunistic cumaceans, and juvenile stages of chemosymbiont containing vesicomyid bivalves. We conclude that organically enriched sediments around wood falls may provide important habitat islands for the persistence and evolution of species dependent on organic- and sulfide-rich conditions at the deep-sea floor and contribute to beta and gamma diversity in deep-sea ecosystems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Abundance and composition of marine benthic communities have been relatively well studied in the SE Brazilian coast, but little is known on patterns controlling the distribution of their planktonic larval stages. A survey of larval abundance in the continental margin, using a Multi-Plankton Sampler, was conducted in a cross-shelf transect off Cabo Frio (23 degrees S and 42 degrees W) during a costal upwelling event. Hydrographic conditions were monitored through discrete CDT casts. Chlorophyll-a in the top 100 m of the water column was determined and changes in surface chlorophyll-a was estimated using SeaWiFS images. Based on the larval abundances and the meso-scale hydrodynamics scenario, our results suggest two different processes affecting larval distributions. High larval densities were found nearshore due to the upwelling event associated with high chlorophyll a and strong along shore current. On the continental slope, high larval abundance was associated with a clockwise rotating meander, which may have entrapped larvae from a region located further north (Cabo de Sao Tome, 22 degrees S and 41 degrees W). In mid-shelf areas, our data suggests that vertical migration may likely occur as a response to avoid offshore transport by upwelling plumes and/or cyclonic meanders. The hydrodynamic scenario observed in the study area has two distinct yet extremely important consequences: larval retention on food-rich upwelling areas and the broadening of the tropical domain to southernmost subtropical areas. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Summer bloom-derived phytodetritus settles rapidly to the seafloor on the West Antarctic Peninsula (WAP) continental shelf, where it appears to degrade relatively slowly, forming a sediment ""food bank"" for benthic detritivores. We used stable carbon and nitrogen isotopes to examine sources and sinks of particulate organic material (POM) reaching the WAP shelf benthos (550-625 m depths), and to explore trophic linkages among the most abundant benthic megafauna. We measured delta(13)C and delta(15)N values in major megafaunal taxa (n = 26) and potential food sources, including suspended and sinking POM, ice algae, sediment organic carbon, phytodetritus, and macrofaunal polychaetes. The range in delta(13)C values (> 14 parts per thousand) of suspended POM was considerably broader than in sedimentary POC, where little temporal variability in stable isotope signatures was observed. While benthic megafauna also exhibited a broad range of VC values, organic carbon entering the benthic food web appeared to be derived primarily from phytoplankton production, with little input from ice algae. One group of organisms, primarily deposit-feeders, appeared to rely on fresh phytodetritus recovered from the sediments, and sediment organic material that had been reworked by sediment microbes. A second group of animals, including many mobile invertebrate and fish predators, appeared to utilize epibenthic or pelagic food resources such as zooplankton. One surface-deposit-feeding holothurian (Protelpidia murrayi) exhibited seasonal variability in stable isotope values of body tissue, while other surface- and subsurface-deposit-feeders showed no evidence of seasonal variability in food source or trophic position. Detritus from phytoplankton blooms appears to be the primary source of organic material for the detritivorous benthos; however, seasonal variability in the supply of this material is not mirrored in the sediments, and only to a minor degree in the benthic fauna. This pattern suggests substantial inertia in benthic-pelagic coupling, whereby the sediment ecosystem integrates long-term variability in production processes in the water column above. Published by Elsevier Ltd.
Resumo:
Petroleum contamination impact on macrobenthic communities in the northeast portion of Todos os Santos Bay was assessed combining in multivariate analyses, chemical parameters such as aliphatic and polycyclic aromatic hydrocarbon indices and concentration ratios with benthic ecological parameters. Sediment samples were taken in August 2000 with a 0.05 m(2) van Veen grab at 28 sampling locations. The predominance of n-alkanes with more than 24 carbons, together with CPI values close to one, and the fact that most of the stations showed UCM/resolved aliphatic hydrocarbons ratios (UCM:R) higher than two, indicated a high degree of anthropogenic contribution, the presence of terrestrial plant detritus, petroleum products and evidence of chronic oil pollution. The indices used to determine the origin of PAH indicated the occurrence of a petrogenic contribution. A pyrolytic contribution constituted mainly by fossil fuel combustion derived PAH was also observed. The results of the stepwise multiple regression analysis performed with chemical data and benthic ecological descriptors demonstrated that not only total PAH concentrations but also specific concentration ratios or indices such as >= C24:< C24, An/178 and Fl/Fl + Py, are determining the structure of benthic communities within the study area. According to the BIO-ENV results petroleum related variables seemed to have a main influence on macrofauna community structure. The PCA ordination performed with the chemical data resulted in the formation of three groups of stations. The decrease in macrofauna density, number of species and diversity from groups III to I seemed to be related to the occurrence of high aliphatic hydrocarbon and PAH concentrations associated with fine sediments. Our results showed that macrobenthic communities in the northeast portion of Todos os Santos Bay are subjected to the impact of chronic oil pollution as was reflected by the reduction in the number of species and diversity. These results emphasise the importance to combine in multivariate approaches not only total hydrocarbon concentrations but also indices, isomer pair ratios and specific compound concentrations with biological data to improve the assessment of anthropogenic impact on marine ecosystems. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Foraminiferal data were obtained from 66 samples of box cores on the southeastern Brazilian upper margin (between 23.8A degrees-25.9A degrees S and 42.8A degrees-46.13A degrees W) to evaluate the benthic foraminiferal fauna distribution and its relation to some selected abiotic parameters. We focused on areas with different primary production regimes on the southern Brazilian margin, which is generally considered as an oligotrophic region. The total density (D), richness (R), mean diversity (H) over bar`, average living depth (ALD(X) ) and percentages of specimens of different microhabitats (epifauna, shallow infauna, intermediate infauna and deep infauna) were analyzed. The dominant species identified were Uvigerina spp., Globocassidulina subglobosa, Bulimina marginata, Adercotryma wrighti, Islandiella norcrossi, Rhizammina spp. and Brizalina sp.. We also established a set of mathematical functions for analyzing the vertical foraminiferal distribution patterns, providing a quantitative tool that allows correlating the microfaunal density distributions with abiotic factors. In general, the cores that fit with pure exponential decaying functions were related to the oligotrophic conditions prevalent on the Brazilian margin and to the flow of the Brazilian Current (BC). Different foraminiferal responses were identified in cores located in higher productivity zones, such as the northern and the southern region of the study area, where high percentages of infauna were encountered in these cores, and the functions used to fit these profiles differ appreciably from a pure exponential function, as a response of the significant living fauna in deeper layers of the sediment. One of the main factors supporting the different foraminiferal assemblage responses may be related to the differences in primary productivity of the water column and, consequently, in the estimated carbon flux to the sea floor. Nevertheless, also bottom water velocities, substrate type and water depth need to be considered.
Resumo:
We aimed to develop site-specific sediment quality guidelines (SQGs) for two estuarine and port zones in Southeastern Brazil (Santos Estuarine System and Paranagua Estuarine System) and three in Southern Spain (Ria of Huelva, Bay of Cadiz, and Bay of Algeciras), and compare these values against national and traditionally used international benchmark values. Site-specific SQGs were derived based on sediment physical-chemical, toxicological, and benthic community data integrated through multivariate analysis. This technique allowed the identification of chemicals of concern and the establishment of effects range correlatively to individual concentrations of contaminants for each site of study. The results revealed that sediments from Santos channel, as well as inner portions of the SES, are considered highly polluted (exceeding SQGs-high) by metals, PAHs and PCBs. High pollution by PAHs and some metals was found in Sao Vicente channel. In PES, sediments from inner portions (proximities of the Ponta do Mix port`s terminal and the Port of Paranagua) are highly polluted by metals and PAHs, including one zone inside the limits of an environmental protection area. In Gulf of Cadiz, SQGs exceedences were found in Ria of Huelva (all analysed metals and PAHs), in the surroundings of the Port of CAdiz (Bay of CAdiz) (metals), and in Bay of Algeciras (Ni and PAHs). The site-specific SQGs derived in this study are more restricted than national SQGs applied in Brazil and Spain, as well as international guidelines. This finding confirms the importance of the development of site-specific SQGs to support the characterisation of sediments and dredged material. The use of the same methodology to derive SQGs in Brazilian and Spanish port zones confirmed the applicability of this technique with an international scope and provided a harmonised methodology for site-specific SQGs derivation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The West Antarctic Peninsula (WAP) shelf experiences intense seasonal and interannual variability in phytoplankton production and particulate-organic-carbon flux to the seafloor. To explore the response of the megabenthic community to this production variability, we conducted video surveys of epibenthic megafauna at three stations on the WAP shelf in Nov-Dec 1999, Mar 2000, Jun 2000, Oct-Nov 2000, and Feb-Mar 2001. The epibenthic megafauna was dominated (>90%) by elasipod holothurians, irregular urchins and anthozoans, with total abundances ranging from 19 to 152 ind. 1 00 m(-2). The abundance of three of the dominant taxa (Protelpidia murrayi, Peniagone vignomi, and Amphipneustes spp.) varied significantly across seasons (p <0.05), although variations were not tightly correlated with the summer bloom cycle. The irregular urchins in the genus Amphipneustes varied 5-fold in abundance at single stations, with maximum densities (an average of 10.1 ind. 100 m(-2)) attained in Jun 2000. Abundances of the elasipod holothurians P. murrayi (1-121 ind. 100 m(-2)) and P. vignoni (0.7-27.5 ind. 100 m(-2)) fell within the range for elasipod holothurians from other bathyal regions measured using image analysis. The abundance of P. murrayi increased up to 6-fold from a single Jun-Oct recruitment pulse, while changes in the abundance of P. vignoni (over 2-fold higher in Feb-Mar 2001) apparently resulted from immigration during the presence of a 1-2 cm thick carpet of fresh phytocletritus. Based on the ratio of the number of fecal casts per individual, elasipod holothurians increased surface-deposit feeding rates by >= 2-fold while phytocletritus was present at the seafloor. Nonetheless, these surface-deposit feeders appeared to feed and egest sediments throughout the winter, which is consistent with year-round persistence of a labile food bank in surficial sediments on the deep WAP shelf.
Resumo:
Calcium carbonate production by marine organisms is an essential process in the global budget of CO32-, and coralline reefs are the most important benthic carbonate producers. Crustose coralline algae (CCA) are well recognized as the most important carbonate builders in the tropical Brazilian continental shelf, forming structural reefs and extensive rhodolith beds. However, the distribution of CCA beds, as well as their role in CO32- mineralization in mesophotic communities and isolated carbonate banks, is still poorly known. To characterize the bottom features of several seamount summits in the Southwestern Atlantic (SWA), side-scan sonar records, remotely operated vehicle imagery, and benthic samples with mixed-gas scuba diving were acquired during two recent research cruises (March 2009 and February 2011). The tops of several seamounts within this region are relatively shallow (similar to 60 m), flat, and dominated by rhodolith beds (Vitoria, Almirante Saldanha, Davis, and Jaseur seamounts, as well as the Trindade Island shelf). On the basis of abundance, dimensions, vitality, and growth rates of CCA nodules, a mean CaCO3 production was estimated, ranging from 0.4 to 1.8 kg m(-2) y(-1) with a total production reaching 1.5 x 10(-3) Gt y(-1). Our results indicate that these SWA seamount summits provide extensive areas of shallow reef area and represent 0.3% of the world's carbonate banks. The importance of this habitat has been highly neglected, and immediate management needs must be fulfilled in the short term to ensure long-term persistence of the ecosystem services provided by these offshore carbonate realms.