2 resultados para Batalha do Vimeiro

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we analyzed the phylogeographic pattern and historical demography of an endemic Atlantic forest (AF) bird, Basileuterus leucoblepharus, and test the influence of the last glacial maximum (LGM) on its population effective size using coalescent simulations. We address two main questions: (i) Does B. leucoblepharus present population genetic structure congruent with the patterns observed for other AF organisms? (ii) How did the LGM affect the effective population size of B. leucoblepharus? We sequenced 914 bp of the mitochondrial gene cytochrome b and 512 bp of the nuclear intron 5 of beta-fibrinogen of 62 individuals from 15 localities along the AF. Both molecular markers revealed no genetic structure in B. leucoblepharus. Neutrality tests based on both loci showed significant demographic expansion. The extended Bayesian skyline plot showed that the species seems to have experienced demographic expansion starting around 300,000 years ago, during the late Pleistocene. This date does not coincide with the LGM and the dynamics of population size showed stability during the LGM. To further test the effect of the LGM on this species, we simulated seven demographic scenarios to explore whether populations suffered specific bottlenecks. The scenarios most congruent with our data were population stability during the LGM with bottlenecks older than this period. This is the first example of an AF organism that does not show phylogeographic breaks caused by vicariant events associated to climate change and geotectonic activities in the Quaternary. Differential ecological, environmental tolerances and habitat requirements are possibly influencing the different evolutionary histories of these organisms. Our results show that the history of organism diversification in this megadiverse Neotropical forest is complex. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research addresses the application of friction stir welding (FWS) of titanium alloy Ti–6Al–4V. Friction stir welding is a recent process, developed in the 1990s for aluminum joining; this joining process is being increasingly applied in many industries from basic materials, such as steel alloys, to high performance alloys, such as titanium. It is a process in great development and has its economic advantages when compared to conventional welding. For high performance alloys such as titanium, a major problem to overcome is the construction of tools that can withstand the extreme process environment. In the literature, the possibilities approached are only few tungsten alloys. Early experiments with tools made of cemented carbide (WC) showed optimistic results consistent with the literature. It was initially thought that WC tools may be an option to the FSW process since it is possible to improve the wear resistance of the tool. The metallographic analysis of the welds did not show primary defects of voids (tunneling) or similar internal defects due to processing, only defects related to tool wear which can cause loss of weld quality. The severe tool wear caused loss of surface quality and inclusions of fragments inside the joining, which should be corrected or mitigated by means of coating techniques on tool, or the replacement of cemented carbide with tungsten alloys, as found in the literature.