5 resultados para BRAZILIAN SAVANNA

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, a microsatellite-enriched genomic library was constructed and primers for 14 microsatellite loci were designed for Xylocopa frontalis. Twenty unrelated individuals were screened. All loci were polymorphic and the number of alleles per locus ranged from 6 to 17 (x = 10.43). Observed (H-o) and expected (H-e) heterozygosities ranged from 0.350 to 0.950 and 0.674 to 0.898, respectively. All loci were in Hardy-Weinberg equilibrium, except one. The microsatellite loci described in this study will contribute towards general biology studies of X. frontalis, intranidal genetic relationships and nest management for the pollination of passion fruit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is the first study which evaluated the influence of cave size and presence of bat guano in ant visitation in Brazilian caves. We provide a list of the ants associated with 27 caves in northeastern Brazil, an area situated in the transition between Cerrado (Brazilian savanna) and Amazon Domain. The study was conducted between January and August 2010. We recorded 24 ant species inserted into 12 genera, 10 tribes, and six subfamilies. The size of the cave and the presence of guano did not influence the richness of ants, and most of the caves had single species. Camponotus atriceps was the species with the larger distribution, being collected in five caves. In addition, we discuss geographic distribution of records and possible ecological roles of ants in cave environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for antplantherbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade-offs with new trichomes) that may have affected the evolution of antplant associations. We measured seven EFN quantitative traits in all 105 species included in a well-supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on antEFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K-values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static-optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade-off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K-values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numbers of fires detected on forest, savanna and transition lands during the 2002-10 biomass burning seasons in Amazonia are shown using fire count data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). The ratio of forest fires to savanna fires has varied substantially over the study period, with a maximum ratio of 0.65:1 in 2005 and a minimum ratio of 0.27:1 in 2009, with the four lowest years occurring in 2007-10. The burning during the droughts of 2007 and 2010 is attributed to a higher number of savanna fires relative to the drought of 2005. A decrease in the regional mean single scattering albedo of biomass burning aerosols, consistent with the shift from forest to savanna burning, is also shown. During the severe drought of 2010, forest fire detections were lower in many areas compared with 2005, even though the drought was more severe in 2010. This result suggests that improved fire management practices, including stricter burning regulations as well as lower deforestation burning, may have reduced forest fires in 2010 relative to 2005 in some areas of the Amazon Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soils of a large tropical area with differentiated landscapes cannot be treated uniformly for ecological applications. We intend to develop a framework based on physiography that can be used in regional applications. The study region occupies more than 1.1 million km² and is located at the junction of the savanna region of Central Brazil and the Amazon forest. It includes a portion of the high sedimentary Central Brazil plateau and large areas of mostly peneplained crystalline shield on the border of the wide inner-Amazon low sedimentary plain. A first broad subdivision was made into landscape regions followed by a more detailed subdivision into soil regions. Mapping information was extracted from soil survey maps at scales of 1:250000-1:500000. Soil units were integrated within a homogenized legend using a set of selected attributes such as taxonomic term, the texture of the B horizon and the associated vegetation. For each region, a detailed inventory of the soil units with their area distribution was elaborated. Ten landscape regions and twenty-four soil regions were recognized and delineated. Soil cover of a region is normally characterized by a cluster composed of many soil units. Soil diversity is comparable in the landscape and the soil regions. Composition of the soil cover is quantitatively expressed in terms of area extension of the soil units. Such geographic divisions characterized by grouping soil units and their spatial estimates must be used for regional ecological applications.