6 resultados para BIOMECHANICAL ANALYSIS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osteoporosis is a major complication of chronic cholestatic liver disease (CCLD). We evaluated the efficacy of using disodium pamidronate (1.0 mg/kg body weight) for the prevention (Pr) or treatment (Tr) of cholestasis-induced osteoporosis in male Wistar rats: sham-operated (Sham = 12); bile duct-ligated (Bi = 15); bile duct-ligated animals previously treated with pamidronate before and 1 month after surgery (Pr = 9); bile duct-ligated animals treated with pamidronate 1 month after surgery (Tr = 9). Rats were sacrificed 8 weeks after surgery. Immunohistochemical expression of IGF-I and GH receptor was determined in the proximal growth plate cartilage of the left tibia. Histomorphometric analysis was performed in the right tibia and the right femur was used for biomechanical analysis. Bone material volume over tissue volume (BV/TV) was significantly affected by CCLD (Sham = 18.1 ± 3.2 vs Bi = 10.6 ± 2.2%) and pamidronate successfully increased bone volume. However, pamidronate administered in a preventive regimen presented no additional benefit on bone volume compared to secondary treatment (BV/TV: Pr = 39.4 ± 12.0; Tr = 41.2 ± 12.7%). Moreover, the force on the momentum of fracture was significantly reduced in Pr rats (Sham = 116.6 ± 23.0; Bi = 94.6 ± 33.8; Pr = 82.9 ± 22.8; Tr = 92.5 ± 29.5 N; P < 0.05, Sham vs Pr). Thus, CCLD had a significant impact on bone histomorphometric parameters and pamidronate was highly effective in increasing bone mass in CCLD; however, preventive therapy with pamidronate has no advantage regarding bone fragility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the osteotomies performed in orthognathic surgery, the sagittal osteotomy of the mandibular ramus (SOMR) is the most common, allowing a great range of movements and stable internal fixation (SIF), therefore eliminating the need of maxillomandibular block in the postoperative period. Objectives: The purpose of this study was to evaluate the biomechanical resistance of three national systems used for SIF in SOMR in sheep mandibles. Material and methods: The study was performed in 30 sheep hemi-mandibles randomly divided into 3 experimental groups, each containing 10 hemi-mandibles. The samples were measured to avoid discrepancies and then subjected to SOMR with 5-mm advancement. In group I, 2.0x12 mm screws were used for fixation, inserted in an inverted "L" pattern (inverted "L" group). In group II, fixation was performed with two 2.0x12 mm screws, positioned in a linear pattern and a 4-hole straight miniplate and four 2.0x6.0 mm monocortical screws (hybrid group). In group III, fixation was performed with two-hole straight miniplates and eight 2.0x6.0 mm monocortical screws (mini plate group). All materials used for SIF were supplied by Osteosin - SIN. The hemimandibles were subjected to vertical linear load test by Kratos K2000MP mechanical testing unit for loading registration and displacement. Results: All groups showed similar resistance during mechanical test for loading and displacement, with no statistically significant differences between groups according to analysis of variance. Conclusion: These results indicate that the three techniques of fixation are equally effective for clinical fixation of SOMR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To compare the biomechanical fixation and histomorphometric parameters between two implant surfaces: non-washed resorbable blasting media (NWRBM) and alumina-blasted/acid-etched (AB/AE), in a dog model. Material and methods: The surface topography was assessed by scanning electron microscopy, optical interferometry and chemistry by X-ray photoelectron spectroscopy (XPS). Six beagle dogs of similar to 1.5 years of age were utilized and each animal received one implant of each surface per limb (distal radii sites). After a healing period of 3 weeks, the animals were euthanized and half of the implants were biomechanically tested (removal torque) and the other half was referred to nondecalcified histology processing. Histomorphometric analysis considered bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Following data normality check with the Kolmogorov-Smirnov test, statistical analysis was performed by paired t-tests at 95% level of significance. Results: Surface roughness parameters Sa (average surface roughness) and Sq (mean root square of the surface) were significantly lower for the NWRBM compared with AB/ AE. The XPS spectra revealed the presence of Ca and P in the NWRBM. While no significant differences were observed for both BIC and BAFO parameters (P>0.35 and P>0.11, respectively), a significantly higher level of torque was observed for the NWRBM group (P = 0.01). Bone morphology was similar between groups, which presented newly formed woven bone in proximity with the implant surfaces. Conclusion: A significant increase in early biomechanical fixation was observed for implants presenting the NWRBM surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface treatment interferes with the primary stability of dental implants because it promotes a chemical and micromorphological change on the surface and thus stimulates osseointegration. This study aimed to evaluate the effects of different surface treatments on primary stability by analyzing insertion torque (IT) and pullout force (PF). Eight samples of implants with different surface treatments (TS - external hexagon with acid surface treatment; and MS - external hexagon, machined surface), all 3.75 mm in diameter x 11.5 mm in length, were inserted into segments of artificial bones. The IT of each sample was measured by an electronic torquemeter, and then the pullout test was done with a universal testing machine. The results were subjected to ANOVA (p < 0.05), followed by Tukey's test (p < 0.05). The IT results showed no statistically significant difference, since the sizes of the implants used were very similar, and the bone used was not highly resistant. The PF values (N) were, respectively, TS = 403.75 +/- 189.80 and MS = 276.38 +/- 110.05. The implants were shown to be different in terms of the variables of maximum force (F = 4.401, p = 0.0120), elasticity in maximum flexion (F = 3.672, p = 0.024), and relative stiffness (F = 4.60, p = 0.01). In this study, external hexagonal implants with acid surface treatment showed the highest values of pullout strength and better stability, which provide greater indication for their use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To explore the biomechanical effects of the different implantation bone levels of Morse taper implants, employing a finite element analysis (FEA). METHODS: Dental implants (TitamaxCM) with 4x13 mm and 4x11 mm, and their respective abutments with 3.5 mm height, simulating a screwed premolar metal-ceramic crown, had their design performed using the software AnsysWorkbench 10.0. They were positioned in bone blocks, covered by 2.5 mm thickness of mucosa. The cortical bone was designed with 1.5 mm thickness and the trabecular bone completed the bone block. Four groups were formed: group 11CBL (11 mm implant length on cortical bone level), group 11TBL (11 mm implant length on trabecular bone level), group 13CBL (13mm implant length on cortical bone level) and group 13TBL (13 mm implant length on trabecular bone level). Oblique 200 N loads were applied. Von Mises equivalent stresses in cortical and trabecular bones were evaluated with the same design program. RESULTS: The results were shown qualitatively and quantitatively by standard scales for each type of bone. By the results obtained, it can be suggested that positioning the implant completely in trabecular bone brings harm with respect to the generated stresses. Its implantation in the cortical bone has advantages with respect to better anchoring and locking, reflecting a better dissipation of the stresses along the implant/bone interfaces. In addition, the search for anchoring the implant in its apical region in cortical bone is of great value to improve stabilization and consequently better stress distribution. CONCLUSIONS: The implant position slightly below the bone in relation to the bone crest brings advantages as the best long-term predictability with respect to the expected neck bone loss.