4 resultados para BIOLOGICAL DETECTION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The aim of this study was to investigate the influence of interdental spacing on the performance of proximal caries detection methods in primary molars. In addition, aspects related to temporary tooth separation with orthodontic separators were evaluated. The proximal spaces between the posterior primary teeth (n = 344) of 76 children (4-12 years old) were evaluated before and after temporary separation. Stainless steel strips with different standardized thicknesses were used to measure the presence of biological spacing and the spacing obtained after temporary separation with orthodontic rubber rings. First, the presence of proximal caries lesions was assessed by visual inspection, bitewing radiographs and a pen-type laser fluorescence device (DIAGNOdent pen). Visual inspection after temporary separation with separators was the reference standard method in checking the actual presence of caries. Multilevel analyses were performed considering different outcomes: the performance of the methods in detecting caries lesions and the spacing after temporary separation. The spacing did not influence the performance of the caries detection methods. The maximum spacing obtained with temporary tooth separation was 0.80 mm (mean +/- standard deviation = 0.46 +/- 0.13 mm). The temporary separation was more effective in the upper arch and less effective when an initial biological interdental spacing was present. The biological interdental spacing does not influence the performance of proximal caries detection methods in primary molars, and temporary tooth separation provides spacing narrower than 1.0 mm.
Resumo:
Fungi are disease-causing agents in plants and affect crops of economic importance. One control method is to induce resistance in the host by using biological control with hypovirulent phytopathogenic fungi. Here, we report the detection of a mycovirus in a strain of Colletotrichum gloeosporioides causing anthracnose of cashew tree. The strain C. gloeosporioides URM 4903 was isolated from a cashew tree (Anacardium occidentale) in Igarassu, PE, Brazil. After nucleic acid extraction and electrophoresis, the band corresponding to a possible double-stranded RNA (dsRNA) was purified by cellulose column chromatography. Nine extrachromosomal bands were obtained. Enzymatic digestion with DNAse I and Nuclease S1 had no effect on these bands, indicating their dsRNA nature. Transmission electron microscopic examination of extracts from this strain showed the presence of isometric particles (30-35 nm in diameter). These data strongly suggest the infection of this C. gloeosporioides strain by a dsRNA mycovirus. Once the hypovirulence of this strain is confirmed, the strain may be used for the biological control of cashew anthracnose.
Resumo:
The formation and properties of carbonate adducts of some organic hydroxy compounds in aqueous medium were investigated. Fatty alcohols and sugars were chosen as representative classes of biological interest, and the medium was carbonated aqueous solution with pH ranging from 3.0 to 8.3. Capillary electrophoresis with two capacitively coupled contactless conductivity detectors (C4Ds) was used for quantitation and to obtain the mobility of the monoalkyl carbonates (MACs), which were used to determine the equilibrium and kinetic constants of the reaction as well as the diffusion coefficients. For increasing chain length of the alcohols, the equilibrium constant tends to the unit, which suggests that fatty alcohols can form the corresponding MACs. The formation of MACs for cyclohexanol and cyclopentanol also suggest the existence of similar species for sterols. Carbonate adducts of fructose, glucose, and sucrose were also detected, which suggests that these counterparts of the well-known phosphates can also occur in the cytosol. Our calculations suggest that one in 1000 to one in 10 000 molecules of these hydroxy compounds would be available as the corresponding MAC in such a medium. Experiments carried out at pH values less than 3.0 showed that there is a catalytic effect of hydronium on the interconversion of bicarbonate and a MAC. Taking into account the great number of hydroxy compounds similar to the ones investigated and that bicarbonate is ubiquitous in living cells, one can anticipate the existence of a whole new class of carbonate adducts of these metabolites.
Resumo:
The aim of this study is to develop a new enzymeless electroanalytical method for the indirect quantification of creatinine from urine sample. This method is based on the electrochemical monitoring of picrate anion reduction at a glassy carbon electrode in an alkaline medium before and after it has reacted with creatinine (Jaffe's reaction). By using the differential pulse voltammetry technique under the optimum experimental conditions (step potential, amplitude potential, reaction time, and temperature), a linear analytical curve was obtained for concentrations of creatinine ranging from 1 to 80 mu mol L-1, with a detection limit of 380 nmol L-1. This proposed method was used to measure creatinine in human urine without the interference of most common organic species normally present in biological fluids (e.g., uric acid, ascorbic acid, glucose, and phosphocreatinine). The results obtained using urine samples were highly similar to the results obtained using the reference spectrophotometric method (at a 95% confidence level). (C) 2012 Elsevier B.V. All rights reserved.