17 resultados para BAINITIC STEELS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical origins of the magnetic properties of nonoriented electrical steels; its relations to microstructural features like grain size, nonmetallic inclusions, dislocation density distribution, crystallographic texture, and residual stresses; and its processing by cold rolling and annealing are overviewed, using quantitative relations whenever available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two steel sheets, one with 5% Ni and another with 10% Ni, were submitted to carburization and quenching, obtaining a microstructure with martensite and retained austenite. These steels were characterized with magnetic Barkhausen noise (MBN). The Barkhausen signal is distinctively different for the carburized and quenched samples. The carburized and quenched samples present higher coercive field than the annealed samples. X-ray diffraction data indicated that the carburized and quenched samples have high density of dislocations, a consequence of the martensitic transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper quantifies the effects of milling conditions on surface integrity of ultrafine-grained steels. Cutting speed, feed rate and depth of cut were related to microhardness and microstructure of the workpiece beneath machined surface. Low-carbon alloyed steel with 10.8 µm (as-received) and 1.7 µm (ultrafine) grain sizes were end milled using the down-milling and dry condition in a CNC machining center. The results show ultrafine-grained workpiece preserves its surface integrity against cutting parameters more than the as-received material. Cutting speed increases the microhardness while depth of cut deepens the hardened layer of the as-received material. Also, deformations of microstructure following feed rate direction were observed in workpiece subsurface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion research in steels is one of the areas in which Mossbauer spectroscopy has become a required analytical technique, since it is a powerful tool for both identifying and quantifying distinctive phases (which contain Fe) with accuracy. In this manuscript, this technique was used to the study of corrosion resistance of plasma nitrided AISI 316L samples in the presence of chloride anions. Plasma nitriding has been carried out using dc glow-discharge, nitriding treatments, in medium of 80 vol.% H-2 and 20 vol.% N-2, at 673 K, and at different time intervals: 2, 4, and 7 h. Treated samples were characterized by means of phase composition and morphological analysis, and electrochemical tests in NaCl aerated solution in order to investigate the influence of treatment time on the microstructure and the corrosion resistance, proved by conversion electron Mossbauer spectroscopy (CEMS), glancing angle X-ray diffraction (GAXRD), scanning electron microscopy (SEM) and potentiodynamic polarization. A modified layer of about 8 gin was observed for all the nitrided samples, independently of the nitriding time. A metastable phase, S phase or gamma(N), was produced. It seems to be correlated with gamma`-Fe-4 N phase. If the gamma(N) fraction decreases, the gamma` fraction increases. The gamma(N) magnetic nature was analyzed. When the nitriding time increases, the results indicate that there is a significant reduction in the relative fraction of the magnetic gamma(N) (in) phase. In contrast, the paramagnetic gamma(N) (p) phase increases. The GAXRD analysis confirms the Mossbauer results, and it also indicates CrN traces for the sample nitrided for 7 h. Corrosion results demonstrate that time in the plasma nitriding treatment plays an important role for the corrosion resistance. The sample treated for 4 h showed the best result of corrosion resistance. It seems that the epsilon/gamma` fraction ratio plays an important role in thin corrosion resistance since this sample shows the maximum value for this ratio. (c) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corrosion protection of AA6063 aluminium alloy by cerium conversion, polyaniline conducting polymer and by duplex coatings has been investigated. The electrochemical behaviour was evaluated in aerated 3.5 wt.% NaCl. All coatings tested shifted the corrosion and pitting potentials to more positive values, indicating protection against corrosion. The duplex coatings are significantly more effective than each coating alone: corrosion and pitting potentials were shifted by +183 and +417 mV(SCE), respectively, by duplex coatings in relation to the untreated aluminium alloy. Optical microscopy and scanning electron microscopy are in agreement with the electrochemical results, reinforcing the superior performance of duplex coatings. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic behaviour of most commercial ferromagnetic steels is usually anisotropic presenting a magnetic easy axis. Changes in the direction of this axis can be related to mechanical changes and anomalies that occur in the fabrication process. The present work describes a method that uses a device with permanent magnets to create a precise rotational magnetic field. The device measures continuous Magnetic Barkhausen Noise signals related to the angle of magnetization, in order to determine the direction of the macroscopic magnetic easy axis. It also offers the possibility of obtaining real time parameters that quantify the magnetic anisotropy of the sample. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fatigue crack behavior in metals and alloys under constant amplitude test conditions is usually described by relationships between the crack growth rate da/dN and the stress intensity factor range Delta K. In the present work, an enhanced two-parameter exponential equation of fatigue crack growth was introduced in order to describe sub-critical crack propagation behavior of Al 2524-T3 alloy, commonly used in aircraft engineering applications. It was demonstrated that besides adequately correlating the load ratio effects, the exponential model also accounts for the slight deviations from linearity shown by the experimental curves. A comparison with Elber, Kujawski and "Unified Approach" models allowed for verifying the better performance, when confronted to the other tested models, presented by the exponential model. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels are candidates for applications in fusion power plants where micro structural long-term stability at temperatures of 650 degrees C to 700 degrees C are required. The microstructural stability of 80% cold-rolled reduced-activation ferritic-martensitic 9% Cr ODS-Eurofer steel was investigated within a wide range of temperatures (300 degrees C to 1350 degrees C). Fine oxide dispersion is very effective to prevent recrystallization in the ferritic phase field. The low recrystallized volume fraction (<0.1) found in samples annealed at 800 degrees C is associated with the nuclei found at prior grain boundaries and around coarse M23C6 particles. The combination of retarding effects such as Zener drag and concurrent recovery decrease the local stored energy and impede further growth of the recrystallization nuclei. Above 90 degrees C, martensitic transformation takes place with consequent coarsening. Significant changes in crystallographic texture are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hysteresis loss subdivision method proved to be a strong tool to help in the analysis of different energy dissipation mechanisms along the quasi-static hysteresis loop measured on electrical steels. This paper used the samemethod to discuss the mechanisms involving the energy loss dissipation in Mn-Zn ferrite toroidal cores. The samples, sintered under controlled atmosphere in industrial conditions, were measured under triangular waveform excitation at very low frequency (5 mHz) and peak flux densities varying from 0.05 T to 0.45 T. The results show a different behavior between the low inductions hysteresis loss (WLI) and the high induction hysteresis loss (WHI) which proves the existence of different energy dissipation mechanisms affecting these loss components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new series of austenitic stainless steels-Nb stabilized, without Mo additions, non-susceptible to delta ferrite formation and devoid of intemetallic phases (sigma and chi), without deformation induced martensite is being developed, aiming at high temperature applications as well as for corrosive environments. The base steel composition is a 15Cr-15Ni with normal additions of Nb of 0.5, 1.0 and 2 wt%. Mechanical properties, oxidation and corrosion resistance already have been invetigated in previous papers. In this paper, the effects of Nb on the SFE, strain hardening and recrystallization resistance are evaluated with the help of Adaptive Neural Networks (ANN).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of cryogenic and stress relief treatments on temper carbide precipitation in the cold work tool steel AISI D2 were studied. For the cryogenic treatment the temperature was −196°C and the holding time was 2, 24 or 30 h. The stress relief heat treatment was carried at 130°C/90 min, when applied. All specimens were compared to a standard thermal cycle. Specimens were studied using metallographic characterisation, X-ray diffraction and thermoelectric power measurements. The metallographic characterisation used SEM (scanning electron microscopy) and SEM-FEG (SEM with field emission gun), besides OM (optical microscopy). No variation in the secondary carbides (micrometre sized) precipitation was found. The temper secondary carbides (nanosized) were found to be more finely dispersed in the matrix of the specimens with cryogenic treatment and without stress relief. The refinement of the temper secondary carbides was attributed to a possible in situ carbide precipitation during tempering.