9 resultados para B. Powder metallurgy
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Recently, a new ternary phase was discovered in the Ti-Si-B system, located near the Ti6Si2B composition. The present study concerns the preparation of titanium alloys that contain such phase mixed with α-titanium and other intermetallic phases. High-purity powders were initially processed in a planetary ball-mill under argon atmosphere with Ti-18Si-6B and Ti-7.5Si-22.5B at. (%) initial compositions. Variation of parameters such as rotary speed, time, and ball diameters were adopted. The as-milled powders were pressureless sintered and hot pressed. Both the as-milled and sintered materials were characterized by X-ray diffraction, scanning electron microscopy and energy-dispersive spectrometry. Sintered samples have presented equilibrium structures formed mainly by the α-Ti+Ti6Si2B+Ti5Si3+TiB phases. Silicon and boron peaks disappear throughout the milling processes, as observed in the powder diffraction data. Furthermore, an iron contamination of up to 10 at. (%) is measured by X-ray spectroscopy analysis on some regions of the sintered samples. Density, hardness and tribological results for these two compositions are also presented here.
Resumo:
This study investigated the effect of pore size on osteoblastic phenotype development in cultures grown on porous titanium (Ti). Porous Ti discs with three different pore sizes, 312 mu m (Ti 312), 130 mu m (Ti 130) and 62 mu m (Ti 62) were fabricated using a powder metallurgy process. Osteoblastic cells obtained from human alveolar bone were cultured on porous Ti samples for periods of up to 14 days. Cell proliferation was affected by pore size at day 3 (p = 0.0010), day 7 (p = 0.0005) and day 10 (p = 0.0090) in the following way: Ti 62 < Ti 130 < Ti 312. Gene expression of bone markers evaluated at 14 days was affected, RUNX2 (p = 0.0153), ALP (p = 0.0153), BSP (p = 0.0156), COL (p = 0.0156), and OPN (p = 0.0156) by pore size as follows: Ti 312 < Ti 130 < Ti 62. Based on these results, the authors suggest that porous Ti surfaces with pore sizes near 62 mu m, compared with those of 312 mu m and 130 mu m, yield the highest expression of osteoblast phenotype as indicated by the lower cell proliferation rate and higher gene expression of bone markers.
Resumo:
Cutting tools with higher wear resistance are those manufactured by powder metallurgy process, which combines the development of materials and design properties, features of shape-making technology and sintering. The annual global market of cutting tools consumes about US$ 12 billion; therefore, any research to improve tool designs and machining process techniques adds value or reduces costs. The aim is to describe the Spark Plasma Sintering (SPS) of cutting tools in functionally gradient materials, to show this structure design suitability through thermal residual stress model and, lastly, to present two kinds of inserts. For this, three cutting tool materials were used (Al2O3-ZrO2, Al2O3-TiC and WC-Co). The samples were sintered by SPS at 1300 °C and 70 MPa. The results showed that mechanical and thermal displacements may be separated during thermal treatment for analysis. Besides, the absence of cracks indicated coherence between experimental results and the residual stresses predicted.
Resumo:
This paper reports the synthesis of Eu-doped hydroxyapatite (HA:Eu) resulting in particles with nanorod diameters from 9 to 26 nm using the microwave hydrothermal method (HTMW). Eu3+ ions were used as a marker in the HA network by basic hydrolysis followed by the HTMW treatment. The crystalline HA:Eu nanorod nature in a short-range order was detected by photoluminescence (PL) measurements from Eu3+ emission into the HA matrix. Thus, was possible to verify that HA crystallization is favored in a short structural order when the HTMW treatment time was increased from 0 to 40 min and that the Eu3+ substitution in the HA lattice is site-selective. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report a systematic study on the influence of the synthesis routes on the structural and magnetic properties of polycrystalline PrxY1-xBa2Cu3O7-delta. We have prepared high-quality samples of this material by following a sol-gel method based on heat treatment in both inert argon and oxygen atmospheres in order to compare their effect on the formation of the superconducting phase using X-ray powder diffraction. Magnetic measurements (DC and AC susceptibility) clearly demonstrate that, for the same concentration of Pr, the superconducting transition temperature markedly increases in all samples prepared in argon atmosphere, including pure Pr-123. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Nickel oxide nonoparticles successfully synthesized by a polymer percursor method are studied in this work. The analysis of X-ray powder diffraction data provides a mean crystallite size of 22 +/- 2 nm which is in a good agreement with the mean size estimated from transmission electron microscopy images. Whereas the magnetization (M) vs. magnetic field (H) curve obtained at 5 K is consistent with a ferromagnetic component which coexists with an antiferromagnetic component, the presence of two peaks in the zero-field-cooled trace suggests the occurrence of two blocking process. The broad maximum at high temperature was associated with the thermal relaxation of uncompensated spins at the particle core and the low temperature peak was assigned to the freeze of surface spins clusters. Static and dynamic magnetic results suggest that the correlations of surface spins clusters show a spin-glass-like below T-g = 7.3 +/- 0.1 K with critical exponents zv = 9.7 +/- 0.5 and beta = 0.7 +/- 0.1, which are consistent with typical reported for spin-glass systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
High-purity niobium powders can be obtained from the well-known hydride-dehydride (HDH) process. The aim of this work was the investigation of the structural phase transition of the niobium hydride to niobium metal as function of temperature, heating rate and time. The niobium powder used in this work was obtained by high-temperature hydriding of niobium machining chips followed by conventional ball milling and sieving. X-ray diffraction measurements were carried out in vacuum using a high-temperature chamber coupled to an X-ray diffractometer. During the dehydriding process, it is possible to follow the phase transition from niobium hydride to niobium metal starting at about 380 degrees C for a heating rate of 20 degrees C/min. The heating rate was found to be an important parameter, since complete dehydriding was obtained at 490 degrees C for a heating rate of 20 degrees C/min. The higher dehydriding rate was found at 500 degrees C. Results contribute to a better understanding of the kinetics of thermal decomposition of niobium hydride to niobium metal. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The effect of the addition of passion fruit peel powder (PFPP) on the fermentation kinetics and texture parameters, post-acidification and bacteria counts of probiotic yoghurts made with two milk types were evaluated during 28 days of storage at 4 degrees C. Milks were fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (CY340), and one strain of probiotic bacteria: Lactobacillus acidophilus (L10 and NCFM), Bifidobacterium animalis subsp. lactis (8104 and HN019). The addition of PFPP reduced significantly fermentation time of skim milk co-fermented by the strains L10, NCFM and HN019. At the end of 28-day shelf-life, counts of B. lactis Bl04 were about 1 Log CFU mL(-1) higher in whole yoghurt fermented with PFPP regarding its control but, in general, the addition of PFPP had less influence on counts than the milk type itself. The titratable acidity in yoghurts with PFPP was significantly higher than in their respective controls, and in skim yoghurts higher than in the whole ones. The PFPP increased firmness, consistency (except for the NCFM strain of L acidophilus) and cohesiveness of all skim yoghurts. The results point out the suitability of using passion fruit by-product in the formulation of both skim and whole probiotic yoghurts. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The solid solution based on Nb5Si3 (Cr5B3 structure type, D8(l), tl32, 14/mcm, No140, a=6.5767 angstrom, c=11.8967 angstrom) in the Nb-Si-B system was studied from the structural and thermodynamic point of view both experimentally and by ab initio calculations. Rietveld refinement of powder X-ray synchrotron data allowed to determine the boron to silicon substitution mechanism and the structural parameters. Ab initio calculations of different ordered compounds and selected disordered alloys allowed to obtain in addition to the enthalpy of formation of the solution, substitution mechanism and structural parameters which are in excellent agreement with the experimental data. The stability of the phase is discussed. (C) 2012 Elsevier Inc. All rights reserved.