3 resultados para Atomic processes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rate coefficients for the radiative association of titanium and oxygen atoms to form the titanium monoxide (TiO) molecule are estimated. The radiative association of Ti(F-3) and O(P-3) atoms is dominated by an approach along the C-3 Delta potential energy curve, accompanied by spontaneous emission into the X-3 Delta ground state of TiO. For temperatures ranging from 300-14 000 K, the total rate coefficients are found to vary from 4.76 x 10(-17) to 9.96 x 10(-17) cm(3) s(-1), respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of the aluminium monofluoride molecule AlF by radiative association of the Al and F atoms is estimated. The radiative association of Al(2P) and F(2P) atoms is found to be dominated by the approach along theA1 potential energy curve accompanied by spontaneous emission into theX1 + ground state of the AlF. For temperatures ranging from 300 to 14 000 K, the rate coefficients are found to vary from 1.35×10−17 to 9.31×10−16 cm3 s−1, respectively.These values indicate that only a small amount of AlF molecules can be formed by radiative association in the inner envelope of carbon-rich stars and other hostile environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty six bottom sediment samples were collected from the Cananeia estuary in summer and winter of 2005. Multielemental analysis was carried out by instrumental neutron activation analysis. Total mercury was determined by cold vapor atomic absorption. As, Cr, Hg and Zn concentrations were compared to the Canadian oriented values (TEL and PEL). Sample points 4 and 9 presented higher concentration for most elements and As and Cr exceeded the TEL values. Organic matter (>10%) associated with siltic and clay sediments was observed. Climatic conditions, hydrodynamic and biogeochemical processes promote differences in seasonal concentrations of elements at some points, which contribute to special distributions.