3 resultados para Atomic force microscopy, aptamer, rupture force
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective: The objective of this study was to analyze the bacterial morphology by atomic force microscopy (AFM) after the application of low-level laser therapy (LLLT) in in vitro culture of Staphylococcus aureus ATCC 29213. Background data: Infections caused by S. aureus are among the highest occurring in hospitals and can often colonize pressure ulcers. LLLT is among the methods used to accelerate the healing of ulcers. However, there is no consensus on its effect on bacteria. Materials and methods: After being cultivated and seeded, the cultures were irradiated using wavelengths of 660, 830, and 904 nm at fluences of 0, 1, 2, 3, 4, 5, and 16 J/cm(2). Viable cells of S. aureus strain were counted after 24 h incubation. To analyze the occurrence of morphological changes, the topographical measurement of bacterial cells was analyzed using the AFM. Results: The overall assessment revealed that the laser irradiation reduced the S. aureus growth using 830 and 904 nm wavelengths; the latter with the greatest inhibition of the colony-forming units (CFU/mL) (331.1 +/- 38.19 and 137.38 +/- 21.72). Specifically with 660 nm, the statistical difference occurred only at a fluence of 3 J/cm(2). Topographical analysis showed small changes in morphological conformity of the samples tested. Conclusions: LLLT reduced the growth of S. aureus with 830 and 904 nm wavelengths, particularly with 904 nm at a fluence of 3 J/cm(2), where the greatest topographical changes of the cell structure occurred.
Resumo:
Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.