3 resultados para Atmospheric physics.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or "rapid") monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction.
Resumo:
This paper reports measurements of atmospheric neutrino and antineutrino interactions in the MINOS Far Detector, based on 2553 live-days (37.9 kton-years) of data. A total of 2072 candidate events are observed. These are separated into 905 contained-vertex muons and 466 neutrino-induced rock-muons, both produced by charged-current nu(mu) and (nu) over bar (mu) interactions, and 701 contained-vertex showers, composed mainly of charged-current nu(e) and (nu) over bar (e) interactions and neutral-current interactions. The curvature of muon tracks in the magnetic field of the MINOS Far Detector is used to select separate samples of nu(mu) and (nu) over bar (mu) events. The observed ratio of (nu) over bar (mu) to v(mu) events is compared with the Monte Carlo ( MC) simulation, giving a double ratio of R((nu) over bar/nu)data/R(nu) over bar/nu MC = 1.03 +/- 0.08(stat) +/- 0.08(syst). The v(mu) and (nu) over bar (mu) data are separated into bins of L/E resolution, based on the reconstructed energy and direction of each event, and a maximum likelihood fit to the observed L/E distributions is used to determine the atmospheric neutrino oscillation parameters. This fit returns 90% confidence limits of |Delta m(2)| = (1.9 +/- 0.4) x 10(-3) eV(2) and sin(2)2 theta > 0.86. The fit is extended to incorporate separate nu(mu) and (nu) over bar mu oscillation parameters, returning 90% confidence limits of |Delta m(2)| - |Delta(m) over bar (2)| = 0.6(-0.8)(+2.4) x 10(-3) eV(2) on the difference between the squared-mass splittings for neutrinos and antineutrinos.