3 resultados para Atlantis II Deep
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
To assess the impact and fate of the summer phytoplankton bloom on Antarctic benthos, we evaluated temporal and spatial patterns in macrofaunal abundance and taxonomic composition along a transect crossing the West Antarctic Peninsula (WAP) continental shelf As part of the FOODBANCS project, we sampled three sites at 550-625 m depths during five cruises occurring in November 1999, February-March 2000, June 2000, October 2000 and March 2001. We used a combination of megacore and box-core samplers to take 81 samples, and collected over 30,000 macrofaunal individuals, one of the largest sampling efforts on the Antarctic shelf to date. Comparison of the two sampling methodologies (box core and megacore) indicates similar macrofaunal densities, but with significant differences in taxonomic composition, a reflection of the different spatial scales of sampling. Macrorfaunal abundances on the WAP shelf were relatively high compared to other Antarctic shelf settings. At two of the three sampling sites, macrofaunal abundance remained constant throughout the year, which is consistent with the presence of a sediment `food bank`. Differences were observed in taxonomic composition at the site closest to the coast (Station A), driven by higher abundances of subsurface-deposit feeders. A significant temporal response was observed in the ampharetid polychaetes at Station A, with an abundance peak in the late fall post-bloom period; this may have resulted from juvenile recruitment during the summer bloom. Familial composition of macrofaunal polychaetes on the WAP shelf is more closely related to deep-sea abyssal fauna than to other shelf regions, and we hypothesize that this is a result of both local ecological conditions (low temperatures) and a reflection of historical processes such as extinctions on the Antarctic shelf during previous glacial maxima followed by recolonization from the deep sea. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG + projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background The molecular phylogenetic relationships and population structure of the species of the Anopheles triannulatus complex: Anopheles triannulatus s.s., Anopheles halophylus and the putative species Anopheles triannulatus C were investigated. Methods The mitochondrial COI gene, the nuclear white gene and rDNA ITS2 of samples that include the known geographic distribution of these taxa were analyzed. Phylogenetic analyses were performed using Bayesian inference, Maximum parsimony and Maximum likelihood approaches. Results Each data set analyzed septely yielded a different topology but none provided evidence for the seption of An. halophylus and An. triannulatus C, consistent with the hypothesis that the two are undergoing incipient speciation. The phylogenetic analyses of the white gene found three main clades, whereas the statistical parsimony network detected only a single metapopulation of Anopheles triannulatus s.l. Seven COI lineages were detected by phylogenetic and network analysis. In contrast, the network, but not the phylogenetic analyses, strongly supported three ITS2 groups. Combined data analyses provided the best resolution of the trees, with two major clades, Amazonian (clade I) and trans-Andean + Amazon Delta (clade II). Clade I consists of multiple subclades: An. halophylus + An. triannulatus C; trans-Andean Venezuela; central Amazonia + central Bolivia; Atlantic coastal lowland; and Amazon delta. Clade II includes three subclades: Panama; cis-Andean Colombia; and cis-Venezuela. The Amazon delta specimens are in both clades, likely indicating local sympatry. Spatial and molecular variance analyses detected nine groups, corroborating some of subclades obtained in the combined data analysis. Conclusion Combination of the three molecular markers provided the best resolution for differentiation within An. triannulatus s.s. and An. halophylus and C. The latest two species seem to be very closely related and the analyses performed were not conclusive regarding species differentiation. Further studies including new molecular markers would be desirable to solve this species status question. Besides, results of the study indicate a trans-Andean origin for An. triannulatus s.l. The potential implications for malaria epidemiology remain to be investigated.