8 resultados para Aspártico peptidase

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positive selection (PS) in the thymus involves the presentation of self-peptides that are bound to MHC class II on the surface of cortical thymus epithelial cells (cTECs). Prss16 gene corresponds to one important element regulating the PS of CD4(+) T lymphocytes, which encodes Thymus-specific serine protease (Tssp), a cTEC serine-type peptidase involved in the proteolytic generation of self-peptides. Nevertheless, additional peptidase genes participating in the generation of self-peptides need to be found. Because of its role in the mechanism of PS and its expression in cTECs, the Prss16 gene might be used as a transcriptional marker to identify new genes that share the same expression profile and that encode peptidases in the thymus. To test this hypothesis, we compared the differential thymic expression of 4,500 mRNAs of wild-type (WT) C57BL/6 mice with their respective Prss16-knockout (KO) mutants by using microarrays. From these, 223 genes were differentially expressed, of which 115 had known molecular/biological functions. Four endopeptidase genes (Casp1, Casp2, Psmb3 and Tpp2) share the same expression profile as the Prss16 gene; i.e., induced in WT and repressed in KO while one endopeptidase gene, Capns1, features opposite expression profile. The Tpp2 gene is highlighted because it encodes a serine-type endopeptidase functionally similar to the Tssp enzyme. Profiling of the KO mice featured down-regulation of Prss16, as expected, along with the genes mentioned above. Considering that the Prss16-KO mice featured impaired PS, the shared regulation of the four endopeptidase genes suggested their participation in the mechanism of self-peptide generation and PS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA coding for a digestive cathepsin L, denominated Sl-CathL, was isolated from a cDNA library of Sphenophorus levis larvae, representing the most abundant EST (10.49%) responsible for proteolysis in the midgut. The open reading frame of 972 bp encodes a preproenzyme similar to midgut cathepsin L-like enzymes in other coleopterans. Recombinant Sl-CathL was expressed in Pichia pastoris, with molecular mass of about 42 kDa. The recombinant protein was catalytically activated at low pH and the mature enzyme of 39 kDa displayed thermal instability and maximal activity at 37 degrees C and pH 6.0. Immunocytochemical analysis revealed Sl-CathL production in the midgut epithelium and secretion from vesicles containing the enzyme into the gut lumen, confirming an important role for this enzyme in the digestion of the insect larvae. The expression profile identified by RT-PCR through the biological cycle indicates that Sl-CathL is mainly produced in larval stages, with peak expression in 30-day-old larvae. At this stage, the enzyme is 1250-fold more expressed than in the pupal fase, in which the lowest expression level is detected. This enzyme is also produced in the adult stage, albeit in lesser abundance, assuming the presence of a different array of enzymes in the digestive system of adults. Tissue-specific analysis revealed that Sl-CathL mRNA synthesis occurs fundamentally in the larval midgut, thereby confirming its function as a digestive enzyme, as detected in immunolocalization assays. The catalytic efficiency of the purified recombinant enzyme was calculated using different substrates (Z-Leu-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC) and rSl-CathL exhibited hydrolysis preference for Z-Leu-Arg-AMC (k(cat)/K-m = 37.53 mM S-1), which is similar to other insect cathepsin L-like enzymes. rSl-CathL activity inhibition assays were performed using four recombinant sugarcane cystatins. rSl-CathL was strongly inhibited by recombinant cystatin CaneCPI-4 (K-i = 0.196 nM), indicating that this protease is a potential target for pest control. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies indicate that thimet oligopeptidase (EC3.4.24.15; TOP) can be implicated in the metabolism of bioactive peptides, including dynorphin 1-8, alpha-neoendorphin, beta-neoendorphin and GnRH. Furthermore, the higher levels of this peptidase are found in neuroendocrine tissue and testis. In the present study, we have evaluated the effect of acute cocaine administration in male rats on TOP specific activity and mRNA levels in prosencephalic brain areas related with the reward circuitry; ventral striatum, hippocampus, and frontal cortex. No significant differences on TOP specific activity were detected in the hippocampus and frontal cortex of cocaine treated animals compared to control vehicle group. However, a significant increase in activity was observed in the ventral striatum of cocaine treated-rats. The increase occurred in both, TOP specific activity and TOP relative mRNA amount determined by real time RT-PCR. As TOP can be implicated in the processing of many neuropeptides, and previous studies have shown that cocaine also alters the gene expression of proenkephalin and prodynorphin in the striatum, the present findings suggest that TOP changes in the brain could play important role in the balance of neuropeptide level correlated with cocaine effects. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzyme activity of protein and carbohydrate degradation in small intestinal mucosa was investigated in goat kids fed with lyophilized bovine and goat colostrum. At 0,7 and 14 h of life 15 male newborns received 5% of body weight of lyophilized bovine colostrum and 14 goat colostrum, both with 55 mg/mL of IgG. Duodenum, jejunum and ileum samples were collected at 18,36 and 96 h of life. Three animals were sampled at birth, without colostrum intake. Activity of aminopeptidase N and A, dipeptidil peptidase IV, lactase, maltase and sucrase was determined as one international unit per gram of tissue. Intracellular enzymatic activity of acid phosphatase was observed by histochemistry in tissue section. Only the activity of aminopeptidase A in the ileum was affected by treatment, with a greater value for LBC than for GC (P < 0.05). The aminopeptidase N activity was the highest at 36 h in the duodenum (P < 0.05) and lowest at 96 h in the jejunum (P < 0.05). Dipeptidil peptidase IV activity was highest at 36 h in the duodenum (P < 0.05), lowest at 96 h in the jejunum (P < 0.05) and higher at 36 h than at 96 h in the ileum (P < 0.05). Aminopeptidase A activity in the ileum was highest at 36 h (P < 0.05), followed by 18 and 96 h of life (P < 0.05). Lactase activity in the duodenum increased from 18 to 36 h and from 36 to 96 h in the jejunum (P < 0.05). Maltase activity increased only in the duodenum from 18 to 96 h (P < 0.05). Sucrase activity in the jejunum decreased from 18 to 36 h and from 36 to 96 h in the ileum (P < 0.05). At birth, activity of most enzymes was similar to that at later times (P < 0.05). Histochemistry analyses showed a higher frequency of lysosomes with acid phosphatase activity in the duodenum, especially at 36 h of life. In the jejunum, the presence of lysosomes with acid phosphatase activity was the highest at 96 h, followed by 36 and 18 h of life. In the ileum, all samples showed low presence of lysosomes with acid phosphatase activity. These results indicate that lyophilized bovine colostrum, as a heterologous source of antibodies or nutrients, is a possible alternative management tool for goats. The present work also suggests that in the first 4 days of life, enzyme activity in the intestinal epithelium of goats is still not fully stimulated, which is an important characteristic for these animals that depend on macromolecule absorption to acquire passive protection after birth. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Processes that promote cancer progression such as angiogenesis require a functional interplay between malignant and nonmalignant cells in the tumor microenvironment. The metalloprotease aminopeptidase N (APN; CD13) is often overexpressed in tumor cells and has been implicated in angiogenesis and cancer progression. Our previous studies of APN-null mice revealed impaired neoangiogenesis in model systems without cancer cells and suggested the hypothesis that APN expressed by nonmalignant cells might promote tumor growth. We tested this hypothesis by comparing the effects of APN deficiency in allografted malignant (tumor) and nonmalignant (host) cells on tumor growth and metastasis in APN-null mice. In two independent tumor graft models, APN activity in both the tumors and the host cells cooperate to promote tumor vascularization and growth. Loss of APN expression by the host and/or the malignant cells also impaired lung metastasis in experimental mouse models. Thus, cooperation in APN expression by both cancer cells and nonmalignant stromal cells within the tumor microenvironment promotes angiogenesis, tumor growth, and metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptides derived from cytosolic, mitochondrial, and nuclear proteins have been detected in extracts of animal tissues and cell lines. To test whether the proteasome is involved in their formation, HEK293T cells were treated with epoxomicin (0.2 or 2 mu M) for 1 h and quantitative peptidomics analysis was performed. Altogether, 147 unique peptides were identified by mass spectrometry sequence analysis. Epoxomicin treatment decreased the levels of the majority of intracellular peptides, consistent with inhibition of the proteasome beta-2 and beta-5 subunits. Treatment with the higher concentration of epoxomicin elevated the levels of some peptides. Most of the elevated peptides resulted from cleavages at acidic residues, suggesting that epoxomicin increased the processing of proteins through the beta-1 subunit. Interestingly, some of the peptides that were elevated by the epoxomicin treatment had hydrophobic residues in P1 cleavage sites. Taken together, these findings suggest that, while the proteasome is the major source of intracellular peptides, other peptide-generating mechanisms exist. Because intracellular peptides are likely to perform intracellular functions, studies using proteasome inhibitors need to be interpreted with caution, as it is possible that the effects of these inhibitors are due to a change in the peptide levels rather than inhibition of protein degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a nonpharmacological tool for heart failure therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In beef cattle, the ability to conceive has been associated positively with size of the preovulatory follicle (POF). Proestrus estradiol and subsequent progesterone concentrations can regulate the endometrium to affect receptivity and fertility. The aim of the present study was to verify the effect of the size of the POF on luteal and endometrial gene expression during subsequent early diestrus in beef cattle. Eighty-three multiparous, nonlactating, presynchronized Nelore cows received a progesterone-releasing device and estradiol benzoate on Day–10 (D 10). Animals received cloprostenol (large follicle-large CL group; LF-LCL; N ¼ 42) or not (small follicle-small CL group; SF-SCL; N ¼ 41) on D 10. Progesterone devices were withdrawn and cloprostenol administered 42 to 60 hours (LF-LCL) or 30 to 36 hours (SF-SCL) before GnRH treatment (D0). Tissues were collected at slaughter on D7. The LF-LCL group had larger (P < 0.0001) POF (13.24 0.33 mm vs. 10.76 0.29 mm), greater (P < 0.0007) estradiol concentrations on D0 (2.94 0.28 pg/mL vs. 1.27 0.20 pg/mL), and greater (P < 0.01) progesterone concentrations on D7 (3.71 0.25 ng/mL vs. 2.62 0.26 ng/mL) compared with the SF-SCL group. Luteal gene expression of vascular endothelial growth factor A, kinase insert domain receptor, fms-related tyrosine kinase 1, steroidogenic acute regulatory protein, cytochrome P450, family 11, subfamily A, polypeptide 1, and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid deltaisomerase 7 was similar between groups. Endometrial gene expression of oxytocin receptor and peptidase inhibitor 3, skin-derived was reduced, and estrogen receptor alpha 2, aldo-keto reductase family 1, member C4, and lipoprotein lipase expression was increased in LF-LCL versus SF-SCL. Results support the hypothesis that the size of the POF alters the periovulatory endocrine milieu (i.e., proestrus estradiol and diestrus progesterone concentrations) and acts on the uterus to alter endometrial gene expression. It is proposed that the uterine environment and receptivity might also be modulated. Additionally, it is suggested that increased progesterone secretion of cows ovulating larger follicles is likely due to increased CL size rather than increased luteal expression of steroidogenic genes.