2 resultados para Asp, Peter

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the marine invertebrate groups recorded from oceanic islands, bryozoans stand out because they can live and reproduce in suboptimal habitats, which may enhance their dispersal capabilities. This study aimed to update the checklist of bryozoans known from the Saint Peter and Saint Paul Archipelago (ASPSP) and discusses their distribution. During the five expeditions conducted between 2007 and 2009, 22 species were found, of which 16 were new occurrences for the archipelago. The bryozoans were collected from different biotic (algae and invertebrates) and abiotic (rocks, rubble and wrecks) substrata. The bryozoan community in ASPSP includes: eight new and probably endemic species, five species that belong to widespread species complexes, three species known only from the Brazilian coast, two species reported from the Western Atlantic and one species recorded from oceanic islets in the Atlantic. Additionally, three species are widespread in tropical to subtropical waters. Margaretta buski can be highlighted as the most conspicuous and abundant species between 1045 m deep and acts as an "ecosystem engineer".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. Methods We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm2, irradiance 2.5 W/cm2 and irradiation times of 60s (dose 150 J/cm2) and 420s (dose 1050 J/cm2) respectively. Results There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm2 dose group were not significantly different from controls. For the 1050 J/cm2 dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. Conclusion LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm2) and high dose (1050 J/cm2) significantly increases melanoma tumor growth in vivo.