5 resultados para Arteriosclerosis.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective-Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. Methods and Results-Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant approximate to 3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl3-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. Conclusion-Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events. (Arterioscler Thromb Vasc Biol. 2012;32:2185-2196.)
Resumo:
Objective-The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. Methods and Results-DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-gamma levels, and ameliorated clinical score (day 5) with a trend for increased survival. Conclusion-Therapeutic use of DF in malaria is proposed. (Arterioscler Thromb Vasc Biol. 2012; 32:786-798.)
Resumo:
The diagnosis of vascular dementia (VaD) describes a group of various vessel disorders with different types of vascular lesions that finally contribute to the development of dementia. Most common forms of VaD in the elderly brain are subcortical vascular encephalopathy, strategic infarct dementia, and the multi infarct encephalopathy. Hereditary forms of VaD are rare. Most common is the cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Sporadic forms of VaD are caused by degenerative vessel disorders such as atherosclerosis, small vessel disease (SVD) including small vessel arteriosclerosis, arteriolosclerosis, and lipohyalinosis, and cerebral amyloid angiopathy (CAA). Less frequently inflammatory vessel disorders and tumor-associated vessel lesions (e. g. angiocentric T-cell or angiotropic large cell lymphoma) can cause symptoms of dementia. Here, we review and discuss the impact of vessel disorders to distinct vascular brain tissue lesions and to the development of dementia in elderly individuals. The impact of coexisting neurodegenerative pathology in the elderly brain to VaD as well as the correlation between SVD and CAA expansion in the brain parenchyma with that of Alzheimer's disease (AD)-related pathology is highlighted. We conclude that "pure" VaD is rare and most frequently caused by infarctions. However, there is a significant contribution of vascular lesions and vessel pathology to the development of dementia that may go beyond tissue damage due to vascular lesions. Insufficient blood blow and alterations of the perivascular drainage mechanisms of the brain may also lead to a reduced protein clearance from extracellular space and subsequent increase of proteins in the brain parenchyma, such as the amyloid beta-protein, and foster, thereby, the development of AD-related neurodegeneration. As such, it seems to be important for clinical practice to consider treatment of potentially coexisting AD pathology in cognitively impaired patients with vascular lesions. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background. Chronic allograft vasculopathy (CAV) is an important cause of graft loss. Considering the immune inflammatory events involved in the development of CAV, therapeutic approaches to target this process are of relevance. Human amniotic fluid derived stem cells (hAFSCs), a class of fetal, pluripotent stem cells with intermediate characteristics between embryonic and adult stem cells, display immunomodulatory properties. hAFSCs express mesenchymal and embryonic markers, show high proliferation rates; however, they do not induce tumor formation, and their use does not raise ethical issues. Thus, we sought to investigate the effect of hAFSC on CAV in a model of aorta transplantation. Methods. Orthotopic aorta transplantation was performed using Fisher (F344) rats as donors and Lewis rats as recipients. Rats were divided into three groups: syngeneic (SYNG), untreated F344 receiving aorta from F344 (n = 8); allogeneic (ALLO), Lewis rats receiving allogeneic aorta from F344 (n = 8); and ALLO + hAFSC, ALLO rats treated with hAFSC (10(6) cells; n = 8). Histological analysis and immunohistochemistry were performed 30 days posttransplantation. Results. The ALLO group developed a robust aortic neointimal formation (208.7 +/- 25.4 gm) accompanied by a significant high number of ED1(+) (4845 +/- 841 cells/mm(2)) and CD43(+) cells (4064 +/- 563 cells/mm(2)), and enhanced expression of a-smooth muscle actin in the neointima (25 +/- 6%). Treatment with hAFSC diminished neointimal thickness (180.7 +/- 23.7 mu m) and induced a significant decrease of ED1(+) (1100 +/- 276 cells/mm(2)), CD43(+) cells (1080 +/- 309 cells/mu m(2)), and alpha-smooth muscle actin expression 8 +/- 3% in the neointima. Conclusions. These preliminary results showed that hAFSC suppressed inflammation and myofibroblast migration to the intima, which may contribute to ameliorate vascular changes in CAV.
Resumo:
INTRODUÇÃO: O tratamento endovascular dos aneurismas da aorta abdominal tem revolucionado o tratamento dessa afecção, em decorrência das baixas taxas de morbidade e mortalidade. Apesar dos avanços tecnológicos ocorridos nas endopróteses, ainda existem limitações anatômicas para o emprego da técnica. Este estudo teve por objetivo avaliar os resultados imediatos do tratamento de pacientes portadores de aneurisma da aorta abdominal com anatomia complexa com uma endoprótese de segunda geração. MÉTODOS: Estudo observacional, prospectivo, não-randomizado, realizado em um único centro, em uma série de pacientes submetidos a tratamento endovascular de aneurismas da aorta abdominal infrarrenais complexos, com prótese com arcabouço metálico disposta em anéis (Anaconda - Vascutek, Terumo, Inchinnan, Escócia). Foram avaliados as características clínicas e angiográficas, o sucesso técnico, o sucesso terapêutico, a morbidade e a mortalidade, e a taxa de reintervenção perioperatória. RESULTADOS: Foram analisados, no período de fevereiro de 2010 a dezembro de 2011, 108 pacientes consecutivos portadores de aneurisma da aorta, dos quais 16 eram portadores de aneurisma da aorta abdominal com anatomia complexa tratados com a prótese Anaconda . A média de idade foi de 76 + 7 anos e 75% eram do sexo masculino. Houve sucesso técnico em 94% e êxito terapêutico em 75% dos casos. Ocorreu um óbito no pós-operatório. As complicações perioperatórias mais prevalentes foram sangramento da ferida operatória (2/16) e embolia periférica (2/16). Foram necessárias reintervenções em 12,5% dos pacientes durante o seguimento. CONCLUSÕES: Neste estudo, a segunda geração da endoprótese Anaconda foi efetiva e apresenta resultados imediatos satisfatórios no tratamento do aneurisma da aorta abdominal infrarrenal de anatomia complexa.