4 resultados para Archive of Underwater Imaging

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Dynamic near infrared fluorescence imaging of the urinary tract provides a promising way to diagnose ureteropelvic junction obstruction. Initial studies demonstrated the ability to visualize urine flow and peristalsis in great detail. We analyzed the efficacy of near infrared imaging in evaluating ureteropelvic junction obstruction, renal involvement and the anatomical detail provided compared to conventional imaging modalities. Materials and Methods: Ten swine underwent partial or complete unilateral ureteral obstruction. Groups were survived for the short or the long term. Imaging was performed with mercaptoacetyltriglycine diuretic renogram, magnetic resonance urogram, excretory urogram, ultrasound and near infrared imaging. Scoring systems for ureteropelvic junction obstruction were developed for magnetic resonance urogram and near infrared imaging. Physicians and medical students graded ureteropelvic junction obstruction based on magnetic resonance urogram and near infrared imaging results. Results: Markers of vascular and urinary dynamics were quantitatively consistent among control renal units. The same markers were abnormal in obstructed renal units with significantly different times of renal phase peak, start of pelvic phase and start of renal uptake. Such parameters were consistent with those obtained with mercaptoacetyltriglycine diuretic renography. Near infrared imaging provided live imaging of urinary flow, which was helpful in identifying the area of obstruction for surgical planning. Physicians and medical students categorized the degree of obstruction appropriately for fluorescence imaging and magnetic resonance urogram. Conclusions: Near infrared imaging offers a feasible way to obtain live, dynamic images of urine flow and ureteral peristalsis. Qualitative and quantitative parameters were comparable to those of conventional imaging. Findings support fluorescence imaging as an accurate, easy to use method of diagnosing ureteropelvic junction obstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: There are no current guidelines for diagnosing and managing mild prenatal hydronephrosis. Variations in physician approach make it difficult to analyze outcomes and establish optimal management. We determined the variability of diagnostic approach and management regarding prenatal hydronephrosis among maternal-fetal medicine obstetricians, pediatric urologists and pediatric radiologists. Materials and Methods: Online surveys were sent to mailing lists for national societies for each specialty. Participants were surveyed regarding criteria for diagnosing mild prenatal hydronephrosis and recommendations for postnatal management, including use of antibiotic prophylaxis, followup scheduling and type of followup imaging. Results: A total of 308 maternal-fetal medicine obstetricians, 126 pediatric urologists and 112 pediatric radiologists responded. Pediatric urologists and radiologists were divided between Society for Fetal Urology criteria and use of anteroposterior pelvic diameter for diagnosis, while maternal-fetal medicine obstetricians preferred using the latter. For postnatal evaluation radiologists preferred using personal criteria, while urologists preferred using anteroposterior pelvic diameter or Society for Fetal Urology grading system. There was wide variation in the use of antibiotic prophylaxis among pediatric urologists. Regarding the use of voiding cystourethrography/radionuclide cystography in patients with prenatal hydronephrosis, neither urologists nor radiologists were consistent in their recommendations. Finally, there was no agreement on length of followup for mild prenatal hydronephrosis. Conclusions: We observed a lack of uniformity regarding grading criteria in diagnosing hydronephrosis prenatally and postnatally among maternal-fetal medicine obstetricians, pediatric urologists and pediatric radiologists. There was also a lack of agreement on the management of mild intermittent prenatal hydronephrosis, resulting in these cases being managed inconsistently. A unified set of guidelines for diagnosis, evaluation and management of mild intermittent prenatal hydronephrosis would allow more effective evaluation of outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational pipeline combining texture analysis and pattern classification algorithms was developed for investigating associations between high-resolution MRI features and histological data. This methodology was tested in the study of dentate gyrus images of sclerotic hippocampi resected from refractory epilepsy patients. Images were acquired using a simple surface coil in a 3.0T MRI scanner. All specimens were subsequently submitted to histological semiquantitative evaluation. The computational pipeline was applied for classifying pixels according to: a) dentate gyrus histological parameters and b) patients' febrile or afebrile initial precipitating insult history. The pipeline results for febrile and afebrile patients achieved 70% classification accuracy, with 78% sensitivity and 80% specificity [area under the reader observer characteristics (ROC) curve: 0.89]. The analysis of the histological data alone was not sufficient to achieve significant power to separate febrile and afebrile groups. Interesting enough, the results from our approach did not show significant correlation with histological parameters (which per se were not enough to classify patient groups). These results showed the potential of adding computational texture analysis together with classification methods for detecting subtle MRI signal differences, a method sufficient to provide good clinical classification. A wide range of applications of this pipeline can also be used in other areas of medical imaging. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the de- termination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the k –ω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle’s autopilot system.