4 resultados para Antinna Propagation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to evaluate the efficiency of the mini-cuttings technique in the vegetative propagation of half-sibs of angico-vermelho (Anadenanthera macrocarpa(Benth) Brenan) regarding to the productive capacity and survival of mini-stumps, rooting of the apical and intermediate mini-cuttings treated with different doses of IBA (0, 2000, 4000 and 6000 mg L-1) as well as to determine the speed of rooting in the greenhouse. The mini-stumps were obtained from seedlings of the six progenies of Anadenanthera macrocarpa half-sibs. The mini-stumps presented productivity from 1,2 to 3,7 mini-cuttings/mini-stump/collection and survival of 84% to 98% after six harvests. The apical mini-cuttings were higher than the intermediate, more prone to root, but the IBA had no significant effect on the rooting of the progenies. The results of the rooting speed showed variation among the progenies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to perform an in vitro evaluation of the auxin: cytokinine ratio in different segments of the epicotyl and hypocotyl of Sacha inchi (Plukenetia Volubilis Linneo) seeds germinated in vitro. The segments apical (A), median (B) and basal (C) were introduced into semi-solid MS culture medium (2.0g L-1 Phytagel), supplemented with MS vitamins, sucrose (30.0g L-1) and submitted to three doses of auxin indolebutyric acid - IBA (0; 0.1; 0.5mg L-1), associated with four doses of the cytokinine benzylaminopurine - BAP (0; 0.1; 0.5; 1.0mg L-1), totaling 36 treatments. After nine weeks of in vitro cultivation, the apical segment ( A) presented shoot formation by direct organogenesis at the concentrations of 0.5 and 1.0 of BAP associated with 0.0 and 0.1 of IBA. It is feasible to use in vitro cultivation with the apical region of seeds germinated in vitro used as explants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of predictor variables is said to be intrinsically multivariate predictive (IMP) for a target variable if all properly contained subsets of the predictor set are poor predictors of the. target but the full set predicts the target with great accuracy. In a previous article, the main properties of IMP Boolean variables have been analytically described, including the introduction of the IMP score, a metric based on the coefficient of determination (CoD) as a measure of predictiveness with respect to the target variable. It was shown that the IMP score depends on four main properties: logic of connection, predictive power, covariance between predictors and marginal predictor probabilities (biases). This paper extends that work to a broader context, in an attempt to characterize properties of discrete Bayesian networks that contribute to the presence of variables (network nodes) with high IMP scores. We have found that there is a relationship between the IMP score of a node and its territory size, i.e., its position along a pathway with one source: nodes far from the source display larger IMP scores than those closer to the source, and longer pathways display larger maximum IMP scores. This appears to be a consequence of the fact that nodes with small territory have larger probability of having highly covariate predictors, which leads to smaller IMP scores. In addition, a larger number of XOR and NXOR predictive logic relationships has positive influence over the maximum IMP score found in the pathway. This work presents analytical results based on a simple structure network and an analysis involving random networks constructed by computational simulations. Finally, results from a real Bayesian network application are provided. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy of ranging measurements depends critically on the knowledge of time delays undergone by signals when retransmitted by a remote transponder and due to propagation effects. A new method determines these delays for every single pulsed signal transmission. It utilizes four ground-based reference stations, synchronized in time and installed at well-known geodesic coordinates and a repeater in space, carried by a satellite, balloon, aircraft, and so forth. Signal transmitted by one of the reference bases is retransmitted by the transponder, received back by the four bases, producing four ranging measurements which are processed to determine uniquely the time delays undergone in every retransmission process. A minimization function is derived comparing repeater's positions referred to at least two groups of three reference bases, providing the signal transit time at the repeater and propagation delays, providing the correct repeater position. The method is applicable to the transponder platform positioning and navigation, time synchronization of remote clocks, and location of targets. The algorithm has been demonstrated by simulations adopting a practical example with the transponder carried by an aircraft moving over bases on the ground.