7 resultados para Anti-restenotic Agent

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Smallanthus sonchifolius (Poepp.) H. Rob. , Asteraceae, known as yacon, is an herb that is traditionally used for the treatment of diabetes in folk medicine. However, recent studies have demonstrated that this plant has other interesting properties such as anti-microbial and anti-inflammatory actions. Thus, the purpose of this study was to evaluate the topical anti-inflammatory property of different extracts prepared from yacon leaves and analyze the role of different chemical classes in this activity. Three yacon leaf extracts were obtained: aqueous extract, where chlorogenic acid derivatives and sesquiterpene lactones were detected; leaf rinse extract, rich in sesquiterpene lactones; and polar extract, rich in chlorogenic acid derivatives. All the extracts exhibited anti-edematogenic activity in vivo (aqueous extract: 25.9% edema inhibition at 0.50 mg/ear; polar extract: 42.7% inhibition at 0.25 mg/ear; and leaf rinse extract: 44.1% inhibition at 0.25 mg/ear). The leaf rinse extract furnished the best results regarding neutrophil migration inhibition, and NO, TNF-? and PGE2 inhibition. These data indicate that both sesquiterpene lactones and chlorogenic acid derivatives contribute to the anti-inflammatory action, although sesquiterpene lactones seem to have more pronounced effects. In conclusion, yacon leaf extracts, particularly the sesquiterpene lactone-rich extract, has potential use as topical anti-inflammatory agent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied as vaccine, the use of plasmid vector (without insert) as therapeutic agent requires further investigation. Results: Here, we showed that plasmid DNA (pcDNA3) at low doses inhibits the production of IL-6 and TNF-alpha by lipopolysaccharide (LPS)-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid DNA could act as an anti-inflammatory agent in a Wistar rat endotoxemia model. Rats injected simultaneously with 1.5 mg/kg of LPS and 10 or 20 mu g of plasmid DNA had a remarkable attenuation of mean arterial blood pressure (MAP) drop at 2 hours after treatment when compared with rats injected with LPS only. The beneficial effect of the plasmid DNA on MAP was associated with decreased expression of IL-6 in liver and increased concentration of plasma vasopressin (AVP), a known vasoconstrictor that has been investigated in hemorrhagic shock management. No difference was observed in relation to nitric oxide (NO) production. Conclusion: Our results demonstrate for the first time that plasmid DNA vector at low doses presents anti-inflammatory property and constitutes a novel approach with therapeutic potential in inflammatory diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dexamethasone (DEXA) is a potent immunosupressant and anti-inflammatory agent whose main side effects are muscle atrophy and insulin resistance in skeletal muscles. In this context, leucine supplementation may represent a way to limit the DEXA side effects. In this study, we have investigated the effects of a low and a high dose of leucine supplementation (via a bolus) on glucose homeostasis, muscle mass and muscle strength in energy-restricted and DEXA-treated rats. Since the leucine response may also be linked to the administration of this amino acid, we performed a second set of experiments with leucine given in bolus (via gavage) versus leucine given via drinking water. Leucine supplementation was found to produce positive effects (e. g., reduced insulin levels) only when administrated in low dosage, both via the bolus or via drinking water. However, under DEXA treatment, leucine administration was found to significantly influence this response, since leucine supplementation via drinking water clearly induced a diabetic state, whereas the same effect was not observed when supplied via the gavage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE. Vascular endothelial growth factor (VEGF) is an important signal protein in vertebrate nervous development, promoting neurogenesis, neuronal patterning, and glial cell growth. Bevacizumab, an anti-VEGF agent, has been extensively used for controlling pathological retinal neovascularization in adult and newborn patients, although its effect on the developing retina remains largely unknown. The purpose of this study was to investigate the effect of bevacizumab on cell death, proliferation, and differentiation in newborn rat retina. METHODS. Retinal explants of sixty 2-day-old Lister hooded rats were obtained after eye enucleation and maintained in culture media with or without bevacizumab for 2 days. Immunohistochemical staining was assessed against proliferating cell nuclear antigen (PCNA, to detect cell proliferation); caspase-3 and beclin-1 (to investigate cell death); and vimentin and glial fibrillary acidic protein (GFAP, markers of glial cells). Gene expressions were quantified by real-time reverse-transcription polymerase chain reaction. Results from treatment and control groups were compared. RESULTS. No significant difference in the staining intensity (on immunohistochemistry) of PCNA, caspase-3, beclin-1, and GFAP, or in the levels of PCNA, caspase-3, beclin-1, and vimentin mRNA was observed between the groups. However, a significant increase in vimentin levels and a significant decrease in GFAP mRNA expression were observed in bevacizumab-treated retinal explants compared with controls. CONCLUSIONS. Bevacizumab did not affect cell death or proliferation in early developing rat retina but appeared to interfere with glial cell maturation by increasing vimentin levels and downregulating GFAP gene expression. Thus, we suggest anti-VEGF agents be used with caution in developing retinal tissue. (Invest Ophthalmol Vis Sci. 2012;53:7904-7911) DOI:10.1167/iovs.12-10283

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five 2-hydroxy-3-substituted-aminomethyl naphthoquinones, nine 1,2,3-triazolic para-naphthoquinones, five nor-beta-lapachone-based 1,2,3-triazoles, and several other naphthoquinonoid compounds were synthesized and evaluated against the infective bloodstream form of Trypanosoma cruzi, the etiological agent of Chagas disease, continuing our screening program for new trypanocidal compounds. Among all the substances, 16-18, 23, 25-29 and 30-33 were herein described for the first time and fifteen substances were identified as more potent than the standard drug benznidazole, with IC50/24 h values in the range of 10.9-101.5 mu M. Compounds 14 and 19 with Selectivity Index of 18.9 and 6.1 are important structures for further studies. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anti-silencing factor 1 (ASF1) is a histone chaperone that contributes to the histone deposition during nucleosome assembly in newly replicated DNA. It is involved in chromatin disassembly, transcription activation and in the cellular response to DNA damage. In Leishmania major the ASF1 gene (LmASF1) is located in chromosome 20 and codes for a protein showing 67% of identity with the Trypanosoma brucei TbASF1a. Compared to orthologous proteins, LmASF1 conserves the main residues relevant for its various biological functions. To study ASF1 in Leishmania we generated a mutant overexpressing LmASF1 in L. major. We observed that the excess of LmASF1 impaired promastigotes growth rates and had no impact on cell cycle progress. Differently from yeast, ASF1 overproduction in Leishmania did not affect expression levels of genes located on telomeres, but led to an upregulation of proteins involved in chromatin remodelling and physiological stress, such as heat shock proteins, oxidoreductase activity and proteolysis. In addition, we observed that LmASF1 mutant is more susceptible to the DNA damaging agent, methyl methane sulphonate, than the control line. Therefore, our study suggests that ASF1 from Leishmania pertains to the chromatin remodelling machinery of the parasite and acts on its response to DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling the dissemination of malaria requires the development of new drugs against its etiological agent, a protozoan of the Plasmodium genus. Angiotensin II and its analog peptides exhibit activity against the development of immature and mature sporozoites of Plasmodium gallinaceum. In this study, we report the synthesis and characterization of angiotensin II linear and cyclic analogs with anti-plasmodium activity. The peptides were synthesized by a conventional solid-phase method on Merrifield's resin using the t-Boc strategy, purified by RP-HPLC and characterized by liquid chromatography/ESI (+) MS (LC-ESI(+)/MS), amino acid analysis, and capillary electrophoresis. Anti-plasmodium activity was measured in vitro by fluorescence microscopy using propidium iodine uptake as an indicator of cellular damage. The activities of the linear and cyclic peptides are not significantly different (p < 0.05). Kinetics studies indicate that the effects of these peptides on plasmodium viability overtime exhibit a sigmoidal profile and that the system stabilizes after a period of 1 h for all peptides examined. The results were rationalized by partial least-square analysis, assessing the position-wise contribution of each amino acid. The highest contribution of polar amino acids and a Lys residue proximal to the C-terminus, as well as that of hydrophobic amino acids in the N-terminus, suggests that the mechanism underlying the anti-malarial activity of these peptides is attributed to its amphiphilic character.