3 resultados para Anti-CD25 (PC61)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulatory T (Treg) cells are fundamental in the control of immunity and excessive tissue pathology. In paracoccidioidomycosis, an endemic mycosis of Latin America, the immunoregulatory mechanisms that control the progressive and regressive forms of this infection are poorly known. Due to its modulatory activity on Treg cells, we investigated the effects of anti-CD25 treatment over the course of pulmonary infection in resistant (A/J) and susceptible (B10.A) mice infected with Paracoccidioides brasiliensis. We verified that the resistant A/J mice developed higher numbers and more potent Treg cells than susceptible B10.A mice. Compared to B10.A cells, the CD4(+)CD25(+)Foxp3(+) Treg cells of A/J mice expressed higher levels of CD25, CTLA4, GITR, Foxp3, LAP and intracellular IL-10 and TGF-beta. In both resistant and susceptible mice, anti-CD25 treatment decreased the CD4(+)CD25(+)Foxp3(+) Treg cell number, impaired indoleamine 2,3-dioxygenase expression and resulted in decreased fungal loads in the lungs, liver and spleen. In A/J mice, anti-CD25 treatment led to an early increase in T cell immunity, demonstrated by the augmented influx of activated CD4(+) and CD8(+) T cells, macrophages and dendritic cells to the lungs. At a later phase, the mild infection was associated with decreased inflammatory reactions and increased Th1/Th2/Th17 cytokine production. In B10.A mice, anti-CD25 treatment did not alter the inflammatory reactions but increased the fungicidal mechanisms and late secretion of Th1/Th2/Th17 cytokines. Importantly, in both mouse strains, the early depletion of CD25(+) cells resulted in less severe tissue pathology and abolished the enhanced mortality observed in susceptible mice. In conclusion, this study is the first to demonstrate that anti-CD25 treatment is beneficial to the progressive and regressive forms of paracoccidioidomycosis, potentially due to the anti-CD25-mediated reduction of Treg cells, as these cells have suppressive effects on the early T cell response in resistant mice and the clearance mechanisms of fungal cells in susceptible mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Squamous cell carcinoma (SCC) constitutes a microenvironment that could modulate the antitumor immune response. Also, tumor-infiltrating lymphocytes are believed to play complex regulatory roles in antitumor immunity against SCC. The presence of regulatory T cells (Tregs) has been associated with the suppression of tumor-reactive T cells. However, the underlying mechanism for this T cell dysfunction is not clear. We used a multistage model of SCC to examine the role of Treg cells during tumor development. 7,12-dimethylbenz[a]-anthracene/phorbol 12-myristate 13-acetate treatment and systemic depletion of Treg cells using an anti-CD25 monoclonal antibody (PC61) resulted in a decrease in the number and incidence of papilloma. Furthermore, CD25 depletion increased the proportion of CD8(+) and CD4(+) T cells that were isolated from tumor lesions. The levels of interleukin (IL)-1 beta, IL-10, IL-12, IL-13, interferon-gamma, transforming growth factor-beta and tumor necrosis factor-alpha, but not IL-17, were increased in the tumor microenvironment after Treg depletion. Therefore, our results indicated involvement of CD25(+) T cells in SCC development and in the suppression of the inflammatory immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmodium chabaudi infection induces a rapid and intense splenic CD4(+) T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (T-reg) cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of T-reg cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4(+) T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4(+)CD25(+)Foxp3(+) cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4(+) T cells, JES6-1 treatment does not impair effector CD4+ T cell activation and IFN-gamma production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-alpha and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4(+) T cells from non-treated chronic mice, while it further increased the response of CD4(+) T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of T-reg cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease.